ICPMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike
Organizer
Bruker
Bruker
Bruker offers the world’s most comprehensive range of scientific instrumentation available under one brand - a brand synonymous with excellence, innovation and quality.
Tags
Microscopy
LinkedIn Logo

Atomic Force Microscopy Methods for Semiconductor Failure Analysis

RECORD | Already taken place We, 28.5.2025
Join us for this webinar to hear about AFM operating modes for failure analysis, with relevant information provided for each mode.
Go to the webinar
Bruker: Atomic Force Microscopy Methods for Semiconductor Failure Analysis
Bruker: Atomic Force Microscopy Methods for Semiconductor Failure Analysis

Atomic force microscopy (AFM) and its related technologies have become essential for characterizing semiconductor materials and devices, from R&D to failure analysis and high-volume manufacturing.

AFM's standard capability to image surface topography with nanometer-scale spatial resolution is commonly used for characterization of surface roughness, defect inspection, critical dimensions, and depth metrology with sub-nanometer precision. AFM also has the complementary ability to measure electrical, magnetic, thermal, and mechanical properties at the nanoscale. Specially equipped Bruker systems can additionally perform chemical identification at the nanoscale using patented photothermal AFM-based IR spectroscopy (AFM-IR) technology.

This webinar focuses on the electrical, thermal, mechanical, and chemical AFM modes important for failure analysis:

  • Electrical modes include methods for carrying out 2D carrier profiling; mapping conductivity variations, work function, and charge related characteristics; and assessing ferroelectric, piezoelectric, or dielectric properties.
  • The thermal mode of scanning thermal microscopy is used to measure local variations in temperature or thermal conductivity, even on active devices.
  • Mechanical modes are used to evaluate nanomechanical properties, such as adhesion, elastic modulus, and viscoelastic modulus.
  • Chemical modes can identify chemical composition of yield-killing defects and process-enabling materials, which are critical for both wafers and photomasks, especially in the EUV era.

The presenters will introduce several modes in each of these categories and highlight physical properties characterized, spatial resolution, detection sensitivity, dynamic range, and quantification potential. They will also illustrate the capabilities and limitations of each operating mode with examples from Si-based devices and other materials, such as compound semiconductors, organic devices, and 2D materials.

Presenters will also discuss practical aspects of AFM for failure analysis, such as sample preparation, probe selection and lifetime, and environmental influences. 

Join us for this webinar to hear about AFM operating modes for failure analysis, with relevant information provided for each mode, including:

  • Capabilities and limitations.
  • Examples from Si-based devices and other materials.
  • Practical advice for implementation.

By the end of the webinar, you will understand the AFM modes most valuable for failure analysis and be equipped to make informed decisions for your applications.

Presenter: Peter De Wolf, Ph.D. (Senior Director, Research Science, Bruker)

Peter De Wolf is director for AFM technology & application development at Bruker Nano Surfaces, covering all applications related to Scanning Probe Microscopy (SPM). He obtained his PhD from IMEC, Belgium on the development of new SPM methods for 2D carrier profiling in semiconductors and has more than 25 years of experience on SPM. He is the author and co-author of over 30 publications related to electrical characterization using SPM. He also owns several SPM patents, and developed several new SPM modes for electrical characterization.

Bruker
LinkedIn Logo
 

Related content

Analysis of rare earth elements in clay using XRF and XRD

Applications
| 2026 | Thermo Fisher Scientific
Instrumentation
XRD
Manufacturer
Thermo Fisher Scientific
Industries
Materials Testing

Measurement of TOC in Chloroisocyanuric Acid Used as Disinfectant

Applications
| 2026 | Shimadzu
Instrumentation
TOC
Manufacturer
Shimadzu
Industries
Pharma & Biopharma

High Precision Analysis of Major Components in Precious Metals by ICP-OES

Applications
| 2025 | Agilent Technologies
Instrumentation
ICP-OES
Manufacturer
Agilent Technologies
Industries
Materials Testing

Analysis of Heavy Metals in Baby FoodUsing ICP-MS

Applications
| 2025 | Shimadzu
Instrumentation
ICP/MS
Manufacturer
Shimadzu
Industries
Food & Agriculture

ICP-OES Analysis of Copper Recovered from Li-Ion Batteries for Foil Manufacturing

Applications
| 2025 | Agilent Technologies
Instrumentation
ICP-OES
Manufacturer
Agilent Technologies
Industries
Materials Testing
Other projects
GCMS
LCMS
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike