ICPMS
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike
Organizer
Anton Paar
Anton Paar
A love of research and high quality standards have made Anton Paar a world market leader in the fields of density measurement, the determination of dissolved CO2, rheometry, material characterization and the production of complex high-precision parts, e.g. for medicinal prostheses.
Tags
Material analysis
LinkedIn Logo

Navigating the Pipkin Map: route planning and the edge of linearity

RECORD | Already taken place We, 23.10.2024
This talk will describe how to use the Pipkin Map to understand test conditions on an instrument.
Go to the webinar
Anton Paar: Navigating the Pipkin Map: route planning and the edge of linearity
Anton Paar: Navigating the Pipkin Map: route planning and the edge of linearity

The Pipkin Map is a foundational tool of the rheologist to separately consider effects of timescale and forcing strength [1-3]. This talk will describe how to use the Pipkin Map to understand test conditions on an instrument, relate those test conditions to processing-relevant time scales and forcing strengths, and understand the limits of the linear viscoelastic regime across a wide range of timescales (Deborah number). The forcing strength can be represented as either a strain, strain rate, or stress magnitude. 

This talk will outline options for dimensionless groups for this axis including but not limited to the Weissenberg number, Plasticity number, Capillary number, and Mnemosyne number. All these dimensionless numbers are subsets of the broader concept of a dimensionless quantity comparing a characteristic strength of deformation to a critical forcing strength for material nonlinearity to appear. In practice, the linear limit is often defined by a subjective threshold of nonlinear emergence. A more rigorous definition, independent of this subjective threshold, will be described, which is most clearly revealed from oscillatory deformation known as medium-amplitude oscillatory shear (MAOS) that independently controls the forcing timescale and amplitude [4-5]. Recent work with stress-controlled MAOS has revealed that stress is a more fundamental measure of nonlinearity strength across a wide range of Deborah number, challenging prior perspectives which have generally fixated on using strain or strain rate to understand the limit of the linear viscoelastic regime [5].

REFERENCES:

Presenter: Randy H. Ewoldt

Randy H. Ewoldt earned his PhD in Mechanical Engineering from MIT in 2009. He then spent two years as a Postdoctoral Fellow at the University of Minnesota in the Department of Chemical Engineering and Materials Science and the Institute for Mathematics and its Applications. In 2011, he joined the University of Illinois Urbana-Champaign (UIUC), where he holds the Alexander Rankin Professorship in the Department of Mechanical Science and Engineering. He is known for his expertise in rheology, including new measurement methods and techniques for avoiding bad data, and regularly teaches short courses in the USA and Europe. He is the winner of numerous awards for his science, writing, and teaching accomplishments including the Metzner Award from the Society of Rheology in 2014, the PECASE award from President Barack Obama in 2017, the Society of Rheology Publication Award in 2021, and a multitude of teaching awards at UIUC.

Anton Paar
LinkedIn Logo
 

Related content

Analysis of rare earth elements in clay using XRF and XRD

Applications
| 2026 | Thermo Fisher Scientific
Instrumentation
XRD
Manufacturer
Thermo Fisher Scientific
Industries
Materials Testing

Measurement of TOC in Chloroisocyanuric Acid Used as Disinfectant

Applications
| 2026 | Shimadzu
Instrumentation
TOC
Manufacturer
Shimadzu
Industries
Pharma & Biopharma

High Precision Analysis of Major Components in Precious Metals by ICP-OES

Applications
| 2025 | Agilent Technologies
Instrumentation
ICP-OES
Manufacturer
Agilent Technologies
Industries
Materials Testing

Analysis of Heavy Metals in Baby FoodUsing ICP-MS

Applications
| 2025 | Shimadzu
Instrumentation
ICP/MS
Manufacturer
Shimadzu
Industries
Food & Agriculture

ICP-OES Analysis of Copper Recovered from Li-Ion Batteries for Foil Manufacturing

Applications
| 2025 | Agilent Technologies
Instrumentation
ICP-OES
Manufacturer
Agilent Technologies
Industries
Materials Testing
Other projects
GCMS
LCMS
Follow us
More information
WebinarsAbout usContact usTerms of use
LabRulez s.r.o. All rights reserved. Content available under a CC BY-SA 4.0 Attribution-ShareAlike