

Poster Reprint

ASMS 2023 Poster number ThP 576

Oligo Purity Analysis and Sequence Confirmation by LC/MS without Ion Pairing Reagents — Sample to reports in about 5 minutes

Guannan Li¹, Peter Rye² , Vaughn Miller² and Thomas Walker²

¹Agilent Technologies, Santa Clara, CA

²Agilent Technologies, Lexington, MA

Introduction

Oligonucleotides are commonly analyzed by LC/MS in negative ion polarity mode using ion-pair reversephase (IPRP) methods. However, because many ionpairing reagents persist in the analytical system long after their use and present a very strong MS response in positive ion polarity, using the same analytical system for multiple applications can be challenging. LC/MS of oligos using HILIC chromatography can be an alternative to IPRP conditions for a wide range of oligo targets. HILIC separations typically have long run times. In this work, we optimized and applied a 1minute Fast LC HILIC method in conjunction with MS1 acquisition for purity/impurities characterization and auto MS/MS acquisition for sequence confirmation on multiple oligos approximately 20mer in length.

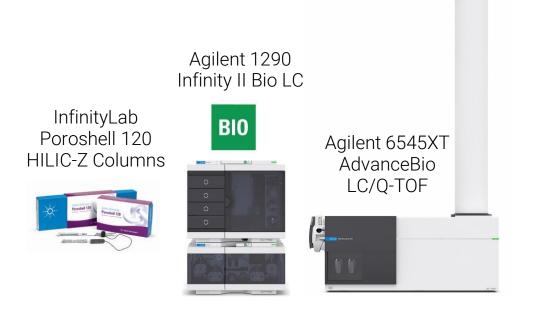


Figure 1. LC/MS Configuration

Table 1. LC/MS method used in the study

/	Agilent 1290 Infinit	y II Bio LC Cor	nditions	Mass Range
Column	InfinityLab Por guard, 2.7 µm,		LIC-Z UHPLC n: 821725-947)	Acquisition Rate
Injection volume	0.25 mL		,	Seque
Mobile phase	A = 90% Acetonitrile : 10% Water + 15 mM Ammonium Acetate B = 10% Acetonitrile : 90% Water + 15 mM Ammonium Acetate			MS Acquisition Rate MS/MS Mass Range MS/MS Acquisition
Gradient program	Time (min) 0.00	B (%) 45	Flow (mL/min)	Rate Isotope Width
	0.40 75 0.41 75 0.60 75 0.61 45		0.6	Collision Energies
		0.6 1.75 1.75	Precursor Threshold	
Stop time	1.00 min		1.75	- Static Exclusion Range Table

Experimental

Oligonucleotide Samples Analysis

LC/MS analyses were conducted on a 1290 Infinity II Bio LC system coupled with a 6545XT AdvanceBio LC/Q-TOF equipped with an Agilent Dual Jet Stream ESI source (Figure 1) [1]. LC separation was obtained with an InfinityLab Poroshell 120 HILIC-Z UHPLC guard column at room temperature. For purity analysis, MS1 data were acquired from 400 to 3200 m/z. For sequence confirmation, auto MS/MS data were acquired with up to 3 precursors per cycle (with >3 charges, prioritized by charge state then abundance) (Table 1). The resulting data were processed with Agilent MassHunter BioConfirm software 12.0 automatically after acquisition. [2,3]

Table 1. LC/MS method used in the study (continued)

6545XT AdvanceBio LC/Q-TOF Source Conditions									
Ion Polarity	Dual AJS Negative								
Gas temperature	350 °C								
Drying gas flow	13 L/min								
Nebulizer gas	35 psi								
Sheath gas temperature	400 °C								
Sheath gas flow	12 L/min								
Capillary voltage	3500								
Nozzle voltage	2000V								
Fragmentor	180 V								
6545XT AdvanceBio LC/Q-TOF Acquisition Conditions									
Purity Analysis									
Mass Range	400 – 3200 m/z								
Acquisition Rate	4 spectra/sec								
Sequence Confirmation									
MS Mass Range	400 – 2500 m/z								
MS Acquisition Rate	10 spectra/sec								
MS/MS Mass Range	100 – 2500 m/z								

Medium (~ 4 *m/z*) 15 V, 20 V, 25 V or 30 V Abs. Threshold: 500 counts Rel. Threshold: 15 % 400 – 600 *m/z* 1700 – 2500 *m/z*

2

1 spectra/sec

Results and Discussion

Table 2. List of oligonucleotides analyzed. Calculated masses are monoisotopic masses (matched using the find by formula algorithm).

Oligonucleotide Name	jonucleotide Name Length Sequence		Calculated Mass (Da)	Measured Mass (Da)	Mass Accuracy (ppm)	
21mer DNA	21	CAGTCGATTGTACTGTACTTA	6408.0961	6408.0941	-0.31	
21mer BS	21	CAGTAGATTGTACTGTCCTTA	6408.0961	6408.0960	-0.02	
21mer Complement	21	TAAGTACAGTACAATCGACTG	6435.1308	6435.1264	-0.69	
PR2	20	GGCCACGCGTCGACTAGTAC	6100.0525	6100.0459	-1.07	
PR8	18	CTAGTTATTGCTCAGCGG	5502.9414	5502.9365	-0.88	

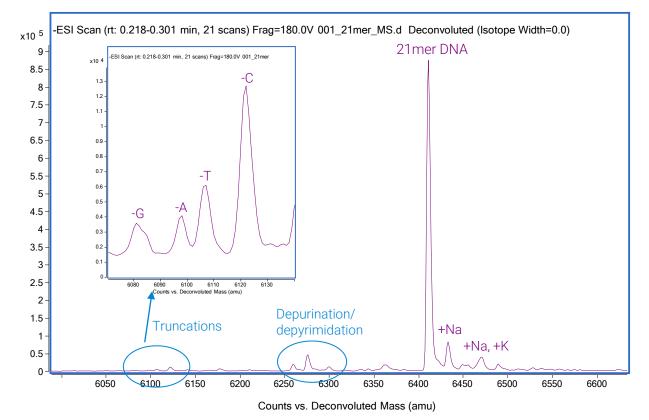
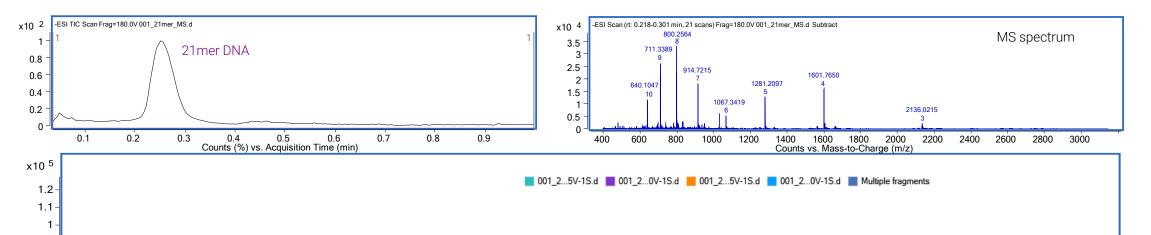


Figure 2. The deconvoluted spectrum for 21mer DNA.


Purity Analysis

For purity/impurities analysis, oligo mass accuracies were about 1 ppm (Table 2). Multiple low-abundance impurities (many below 0.2 % of target), which are commonly found using extended ion-pairing gradients, were observed and identified. Figure 2 shows the deconvolution result for 21mer DNA.

Sequence Confirmation Analysis

For sequence confirmation analysis, auto MS/MS acquisition resulted in 1-2 MS/MS spectra per precursor. For all the oligos in the study, the data for 4 injections, each using one collision energy, were aggregated by the software and resulted in complete sequence coverage. Figure 3 shows the data for 21mer DNA.

3

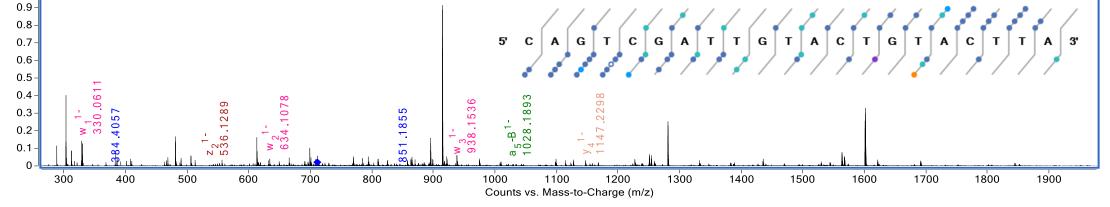


Figure 3. 21mer DNA data. 100% sequence coverage achieved.

Reproducibility and Oligo Retention

Despite the speed of the method, good chromatographic peak shape (6 seconds wide) and retention was achieved. Pump backpressure traces for 50 injections were superimposable, indicating excellent gradient reproducibility (Figure 4). Variable retention were observed with Fast LC HILIC method. Figure 5 shows the overlaid TIC for five oligo samples ranging from 18 to 21-mer in length.

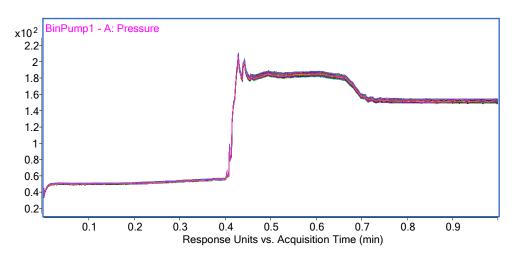


Figure 4. Overlaid pump pressure traces for 50 injections.

Sample to Reports in About 5 Minutes

Data analysis methods for oligo workflows were developed in BioConfirm software [4,5]. Data acquisition and data analysis were synchronized by setting up automation in MassHunter Acquisition (Figure 6).

Method Editor	
+ C↑ □ □ + A HILIC.m	• 🗸 🗁 🗄
Properties DA Q-TOF	
Data Conversions Qual Quant BioConfirm	
BioConfirm Automation	
BioConfirm Method	
Method is linked to D:\Projects\6545XT\Methods\BioConfirm\12.0\TPI-GLm	< >
Link O Copy	
Change to Method: D:\Projects\6545XT\Methods\BioConfirm\12.0\TPI-GL.m	
View Method	

Set up run information in worklist run parameters

in Parameters	Data File Settings	Additional Parameters	
Operator Infor	mation		
Operator nam	e admin (admin)		
Run Informatio	n		
Run Informatio Method part to run		on and DA \sim	Synchronous DA

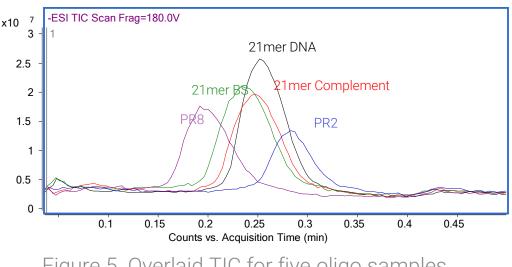


Figure 5. Overlaid TIC for five oligo samples.

Conclusions

- This work describes two workflows enabling Fast LC/MS characterization of oligos without ion pairing reagents.
- The analytical results demonstrate that excellent mass accuracy for expected oligonucleotides was achieved.
- 100% sequence coverages were achieved on the five oligonucleotides analyzed.
- Sample to reports in about 5 minutes was achieved with synchronous data analysis.

References

¹Rye, P.; Yang, Y., Agilent Technologies application note, publication number 5994-3753EN, 2022.

²Rye, P.; Schwarzer, C., Agilent Technologies application

Build a worklist

Workli	st										
ữ 다 巴 巴 ► ■ II & HLIC.w						·트 트 能 후 대 Q & D E					
	-	Status	Sample Name	Sample Position	Data File	Inj Vol	BioConfirm Workflow	Sequences	Modification Profiles	Oligonucleotide Experiment	Oligonucleotide Matching Rules
2	~	Pending	21mer	p1-c2	001_21mer_MS-r001.d	0.25	Oligonucleotides	^^21mer	!!^^/K/ !!^^/Na	TargetPlusImpurities	Deletion=0;Split=0;FivePrimeTrung
3	1	Pending	21mer	p1-c2	001_21mer_MSMS-1400-15V-1S.d	0.25	Oligonucleotides	^^21mer		SequenceConfirmation	
4	✓	Pending	21mer	p1-c2	001_21mer_MSMS-1400-20V-1S.d	0.25	Oligonucleotides	^^21mer		SequenceConfirmation	
5	-	Pending	21mer	p1-c2	001_21mer_MSMS-1400-25V-1S.d	0.25	Oligonucleotides	^^21mer		SequenceConfirmation	
6	\checkmark	Pending	21mer	p1-c2	001_21mer_MSMS-1400-30V-1S.d	0.25	Oligonucleotides	^^21mer		SequenceConfirmation	

Figure 6. Automation setup in MassHunter Acquisition.

https://www.agilent.com/en/promotions/asms

This information is subject to change without notice.

DE28636888

© Agilent Technologies, Inc. 2023 Published in USA, May 31,2023 note, publication number 5994-5631EN, 2023.

³Li, G.; Rye, P., Agilent Technologies application note, publication number 5994-5632EN, 2023.

⁴Wong, D.; Rye, P., Agilent Technologies application note, publication number 5994-4817EN, 2022.

⁵Wong, D.; Rye, P., Agilent Technologies application note, publication number 5994-5071EN, 2022.

