
Overview
Purpose: Analysis of a complex lipid extract with high resolution and high mass accuracy including fast polarity 
switching and fragmentation.

Methods: On-line LC-MS using a stand-alone OrbitrapTM.

Results: Accurate mass data of different lipid species within the different lipid classes ionizing in different 
polarity modes could be obtained in one single LC-MS run.

Introduction 
The analysis of lipids is challenging to mass spectrometry due to its complexity and variety of lipid classes. 
Electrospray ionization both in positive and in negative ionization mode has been shown to be a useful method 
for structural studies of lipids and especially for phospholipids because of their zwitterionic structure. Information 
can be obtained regarding the molecular weight, the acid moieties and the residue attached to the phosphoric 
acid. 
Some lipid classes like the phosphatidylinositols (PI) are best analyzed in negative ionization mode where most 
other lipid classes are best ionized in positive mode of operation. Nevertheless, both ionization modes deliver 
complementary information and therefore, to save time, it is beneficial to run the mass spectrometer in the 
alternated mode of operation. The non hybrid benchtop orbitrap mass spectrometer is capable of providing a full 
cycle (one positive and one negative high resolution full scan) in less than one second while maintaining high 
mass accuracy. In addition the instrument can perform CID experiments in the HCD collision cell delivering 
accurate fragment mass information which is of high value for structural analysis.

Methods 
All on-line LC-MS Experiments were performed on an ExactiveTM mass spectrometer (Thermo Fisher Scientific, 
Bremen, Germany) equipped with an AccelaTM HPLC system (Thermo Fisher Scientific, San Jose, CA) 
using a 5 um 150x2.1 mm Hypersil Silica Column (Thermo Fisher Scientific, USA) at a flow rate of 300 ul/min. 
Solvents: A – CHCl3 / MeOH / 80:20, 5 mM NH4OAc, B – CHCl3 / MeOH / H2O 60:34:6, 5 mM NH4OAc. 
Gradient: 0-2 min 20% B, 2–10 min 20% B – 100% B,10–18 min 100% B,18–19 min 100% B – 20% B,
19–27 min 20% B.
The mass spectrometer was operated with standard electrospray ionization performing alternating full scan and 

CID fragment ion scans carried out in the HCD collision cell (see Figure 1). Resolution settings of 100,000 were 
applied in both polarity modes. For the fast polarity switching experiments a resolution setting of 25,000 was 
used to achieve a full cycle (one positive full scan and one negative full scan) in less than one second.

Conclusions 
The ExactiveTM is an ideal instrument for the analysis of complex lipid extracts. The ability to perform full scans 
and MS/MS scans in both polarity modes at very high resolution ensuring accurate masse measurements 
independent of the polarity allows fast, precise and unambiguous identification of the lipid classes as well as the 
individual lipid species. Operation of the instrument in the alternated mode of operation saves time without 
sacrificing analytical performance. 
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FIGURE 2. Base peak chromatogram of the lipid 
extract in positive ionization mode.

FIGURE 3. Base peak chromatogram of the lipid 
extract in negative ionization mode.

FIGURE 1. Schematic layout of the instrument

Results
As can be seen from the total ion chromatograms generated in both ionization mode polarities (figures 2 and 3), the 
chromatographic conditions employed allow good separation of the different lipid classes but not complete 
separation of the different lipid species within one lipid class.
Therefore, resolution settings of up to 100,000 were used in both polarity modes to ensure the best possible mass 
spectrometric separation for these complex extracts. Mass accuracies in the low to sub ppm range were obtained 
without averaging data and were applied to identify and confirm the different lipids in each scan.
Due to the complexity of the extracts with many isobaric compounds amongst the different lipid classes it is 
essential to obtain fragmentation information in addition to the full scan accurate mass data. 
This allows confirmation of the identity of the different lipid classes and furthermore to determine the fatty acid 
pattern within these lipid classes. 

Therefore, resolution settings of up to 100,000 were used in both polarity modes to ensure the best possible 
mass spectrometric separation for these complex extracts. Mass accuracies in the low to sub ppm range were 
obtained without averaging data and were applied to identify and confirm  the different lipids in each scan.
Due to the complexity of the extracts with many isobaric compounds amongst the different lipid classes it is 
essential to obtain fragmentation information in addition to the full scan accurate mass data. This allows 
confirmation of the identity of the different lipid classes and furthermore to determine the fatty acid pattern within 
these lipid classes. 
The high mass accuracy fragmentation data inherent to HCD offers the ability to generate pseudo parent ion 
mass chromatograms which are ideally suited to confirm the specific lipid classes. In combination with high 
resolution (key for separation of interferences) the applied narrow mass tolerance window (as a result of stable 
accurate masses) ensures correct identification of the lipid classes even for very complex samples. Examples for 
the benefits of these instrumental features are shown using complex natural lipid extracts.

FIGURE 4. Positive full scan mass spectrum of the PE section taken at RT 5.3 min and list of identified 
PEs obtained from the positive full scan experiment. 

FIGURE 5. Positive HCD MS/MS spectrum of the PEs
at RT 5.3 minutes

Detailed structural analysis of the phosphatidylethanolamines (PE)
Within the different lipid classes it is difficult to separate by LC the individual species. The lack of 
chromatographic separation is compensated for by high resolution in the mass spectrometer with the full scan 
and HCD fragmentation scans. We used a resolution setting of 100,000 for the alternating full scan / HCD scan 
experiment and performed separate runs in each polarity mode. 
As can be seen from the mass spectrum of the PE section of the lipid extract, a number of different PEs co-elute 
(figure 4). Using the accurate masses for the determination of the elemental composition and subsequently for 
the identification of the different PE species, we did find a number of PEs with one ether function in the molecule 
(figure 4, blue masses). In any case, as can be seen from the list of PEs in Figure 4, all compounds could be 
identified with a mass error of less than 2 ppm. Similar results are obtained from the full scan data taken in 
negative ionization mode (showing [M-H]-, table not shown) and ensures that all detected species within the lipid 
class. 
All HCD spectra show the same good mass accuracy as the full scan spectra (figure 5 and 6). Mass deviations 
of less than 2 ppm are routinely obtained using external calibration. The fragmentation pathway can be easily 
confirmed with the use of the accurate masses of the fragments allowing the determination of the elemental 
composition of the fragments in both polarity modes. 
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FIGURE 8. Negative full scan spectrum of the lipid extract recorded during the elution of the PSs
together with an accurate mass list of all detected PS species.

FIGURE 9. Negative HCD MS/MS spectrum of the lipid extract recorded during the elution of the PSs.

In order to obtain all the accurate mass information of lipids ionizing in the positive as well as in the negative ion 
mode, the instrument was operated in the fast polarity switching mode. Two consecutive scans show the [M+H]+ 
and [M-H]- ion respectively for the different fatty acid containing phosphatidylethanolamines (figure 7). One full 
cycle (one positive and one negative scan) was acquired in less than one second at 25,000 resolution. Mass 
accuracy was well below 3 ppm for all ions. 
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FIGURE 6. Negative HCD MS/MS spectrum of the 
PEs at RT 5.3 minutes. Inset shows the fatty acid 
region with assignment of the fatty acids chain 
length and degree of saturation.
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FIGURE 7. Example of alternating positive and negative scan during fast polarity switching at the 
retention time of PE species.

As an example for a different lipid class the negative full scan spectrum (figure 8) and the HCD spectrum (figure 
9) are shown for the phosphatityl-serines (PS).
Similar to the other lipid classes, the full scan data for the PSs are used to determine the accurate molecular 
weights and subsequently their elemental compositions (figure8). In the HCD scan significant fragments are 
seen for the loss of the serine group and for the fatty acid residues. This allows the determination of the lipid 
group and the distribution of the fatty acids in the PS molecules (figure 9). 
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