Thermo Fisher s c | e N T | F | C

GC-MS analysis of polycyclic aromatic hydrocarbons in multiple matrices using a single calibration curve following EPA method 8270E

Andy Fornadel, PhD

Product Marketing Manager – Americas August 4th, 2022

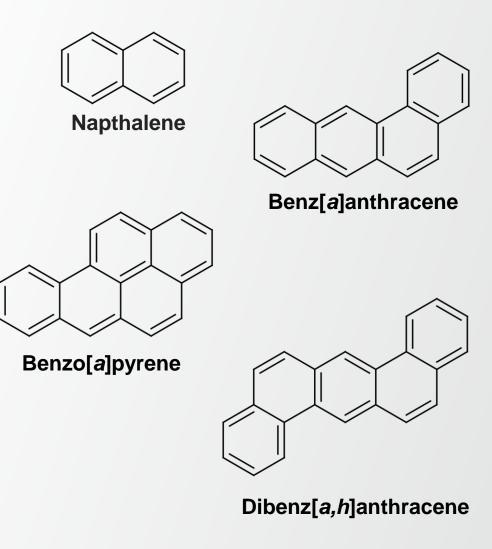
The world leader in serving science

Agenda

Introduction to polycyclic hydrocarbons

2 Challenges in GC-MS analysis using EPA method 8270E

Analysis of PAHs in water and soil


Conclusions

Introduction – Polycyclic Aromatic Hydrocarbons (PAHs)

- Organic compounds consisting of 2 or more aromatic rings
- Sources:
 - Naturally occurring in fossil fuels
 - Anthropogenically produced form the incomplete combustion of organic matter (i.e., fossil fuels, wood, garbage)
- Over 100 PAH compounds identified in environmental samples

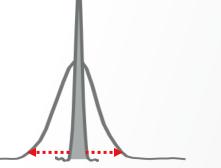
Thermo Fi

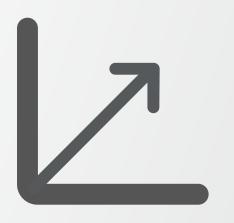
Polycyclic Aromatic Hydrocarbons (PAHs)

Wide environmental distribution

- Physical/Chemical properties allow for partitioning between various environmental media (air, water, soil)
- Bioaccumulate in living organisms
 - Exposure increases up the food chain
- Toxic
 - Carcinogenic
 - Genotoxicity
 - Endocrine disruptors

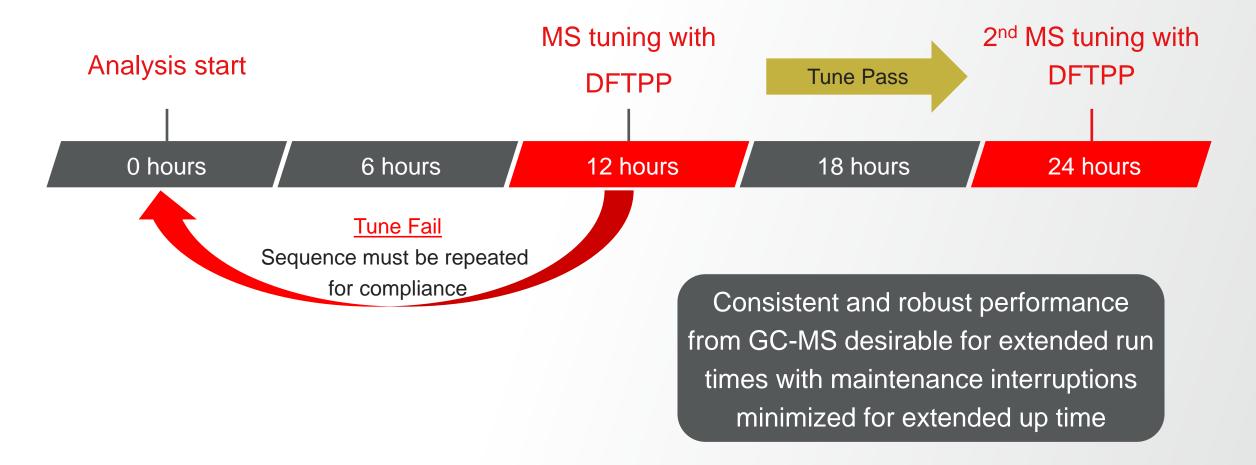
Environment and Human health hazard


Gas Chromatography Mass spectrometry (GC-MS)


Semi-volatile nature of PAHs makes GC-MS an ideal tool for sample introduction and analysis

Sufficient chromatographic separation between PAH isomers needed to avoid isobaric interferences

Challenges



Thermo Fi

- Multiple calibration curves needed to accurately quantify concentration range present in various sample matrices
- Compounds with high boiling points prone to peak broadening and carryover between injections

Additional challenges with EPA Method 8270E

 In sequence MS tuning with 50 ng decafluorotriphenylphosphine (DFTPP) required after every 12 hours of analysis

Thermo Fi

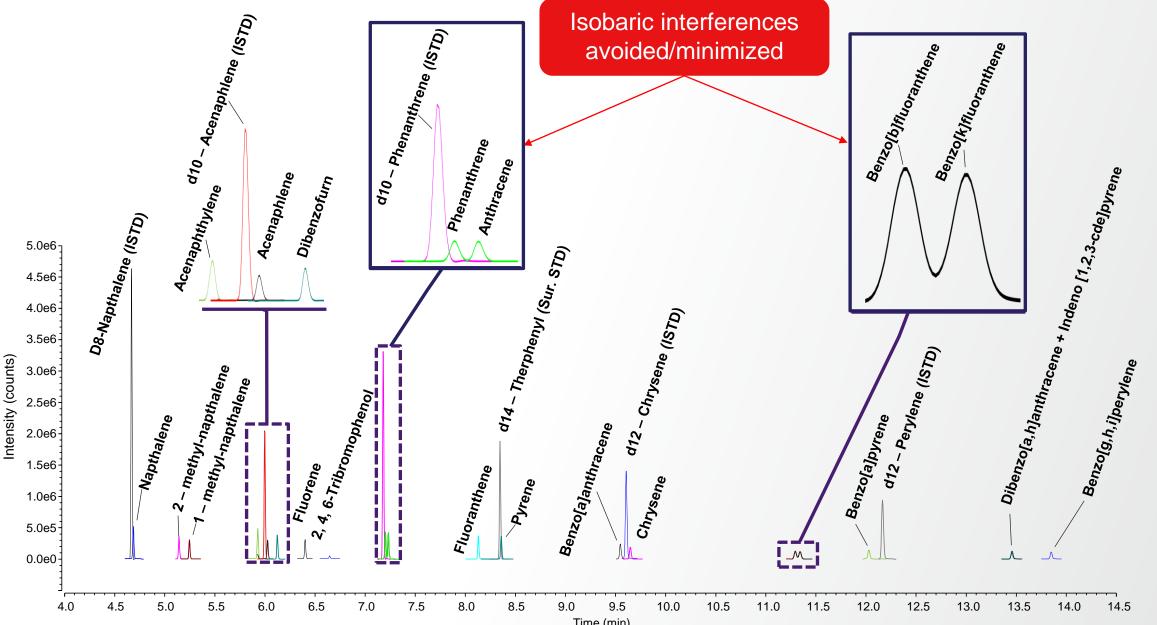
Analytical Configuration

Т	he	'n	no		Í	sł	16	r
S	CΙ	Е	Ν	т	I	F	L	С

Injection parameters			
Inlet module and mode	SSL, split		
Liner	P/N 453A1925-UI		
Liner type and size	Thermo Scientific™ LinerGOLD™, 4 mm i.d. × 78.5 mm		
Injection volume (µL)	1		
Inlet temperature (°C)	300		
Split flow (mL/min)	15		
Carrier gas, carrier flow (mL/min), carrier mode	He, 1.5, constant flow		
Split ratio	10:1		
Purge flow (mL/min)	5		
Pre-injection needle wash	5 times, with DCM		
Post-injection needle wash	10 times with DCM, 10 times with MeOH		

Chromatographic column	
Thermo Scientific [™] TraceGOLD [™] TG-PAH	<u>P/N 26055-0470</u>
Column dimensions	30 m × 0.25 mm i.d. × 0.10 µm

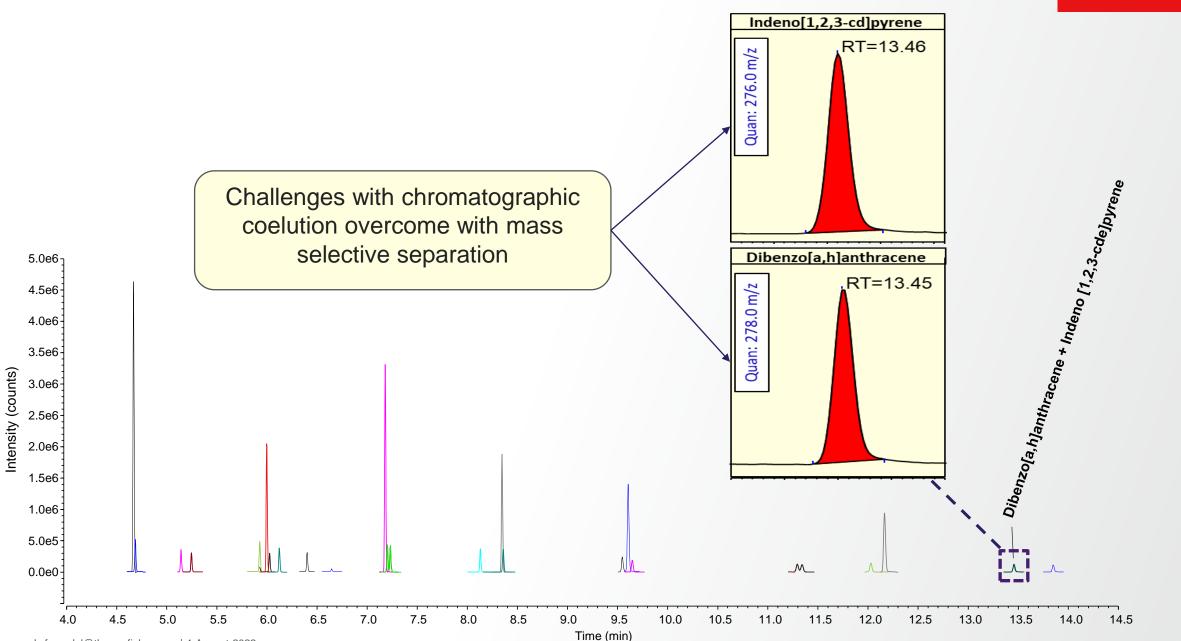
Oven temperature program


Temperature 1 (°C)	40
Hold time (min)	1
Temperature 2 (°C)	285
Rate (°C/min)	35
Temperature 3 (°C)	295
Rate (°C/min)	3
Temperature 4 (°C)	350
Rate (°C/min)	30
Hold time (min)	2
Total GC run time (min):	15.2

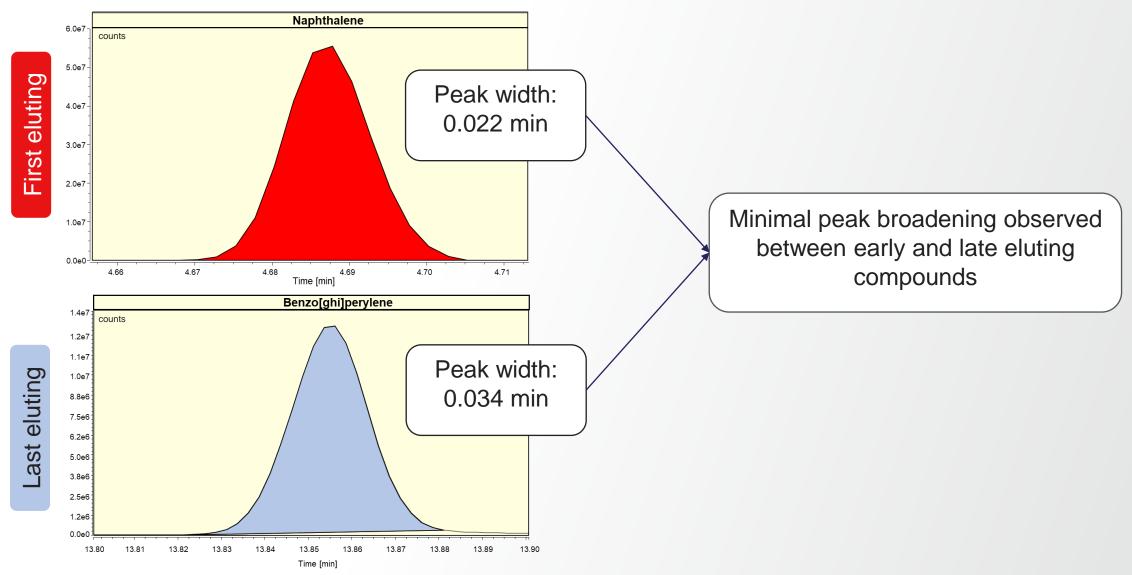
MS parameters				
lon source	ExtractaBrite			
Transfer line temperature (°C)	350			
lon source temperature (°C)	350			
lonization type	El			
Electron energy (eV)	70			
Emission current (µA)	10			
Acquisition mode	SIM, 2 ions/compound			

Compound name	Rt (min)	MS quantifier ion (<i>m/z</i>)	MS confirmatory ion (<i>m/z</i>)	
Naphthalene-d ₈	4.7	136	108	
Naphthalene	4.8	128	129	
2 - methyl Naphthalene	5.2	142	141	
1 - methyl Naphthalene	5.3	142	141	
Acenaphthylene	5.9	152	151	
Acenaphthene	6.0	153	154	
Acenaphthene-d ₁₀	6.0	162	164	
Dibenzofuran	6.1	168	139	
Fluorene	6.4	165	166	
Phenanthrene-d ₁₀	7.2	188	184	
Phenanthrene	7.2	178	176	
Anthracene	7.2	178	176	
Fluoranthene	8.1	202	200	
Terphenyl-d ₁₄	8.3	244	122	
Pyrene	8.4	202	200	
Benz[a]anthracene	9.5	228	226	
Chrysene-d ₁₂	9.7	240	236	
Chrysene	9.7	228	226	
Benzo[b]fluoranthene	11.3	252	250	
Benzo[k]fluoranthene	11.4	252	250	
Benzo[a]pyrene	12.1	252	250	
Perylene-d ₁₂	12.2	264	260	
Dibenzo[a,h]anthracene	13.5	278	139	
Indeno[1,2,3-cd]pyrene	13.5	276	138	
Benzo[g,h,i]perylene	13.9	276	138	

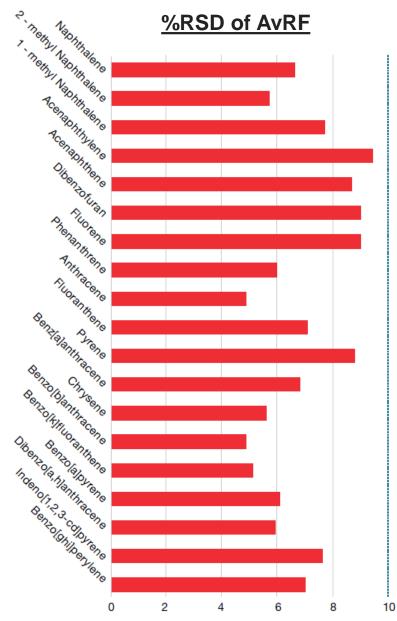
Chromatographic separation and isomer resolution


Thermo Fisher

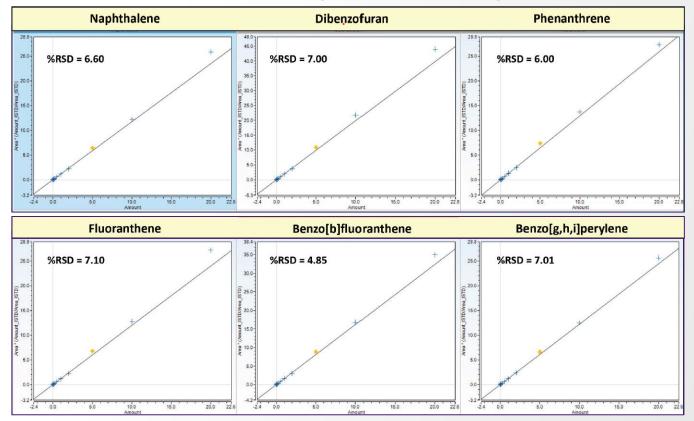
8 andy.fornadel@thermofisher.com | 4-August-2022


Chromatographic separation and isomer resolution

Thermo Fis


Chromatography

EPA Method 8270E criteria – Peak broadening


Thermo Fisher

Response linearity

Calibration range: 2.5 - 20,000 ng/ml

Thermo Fisher

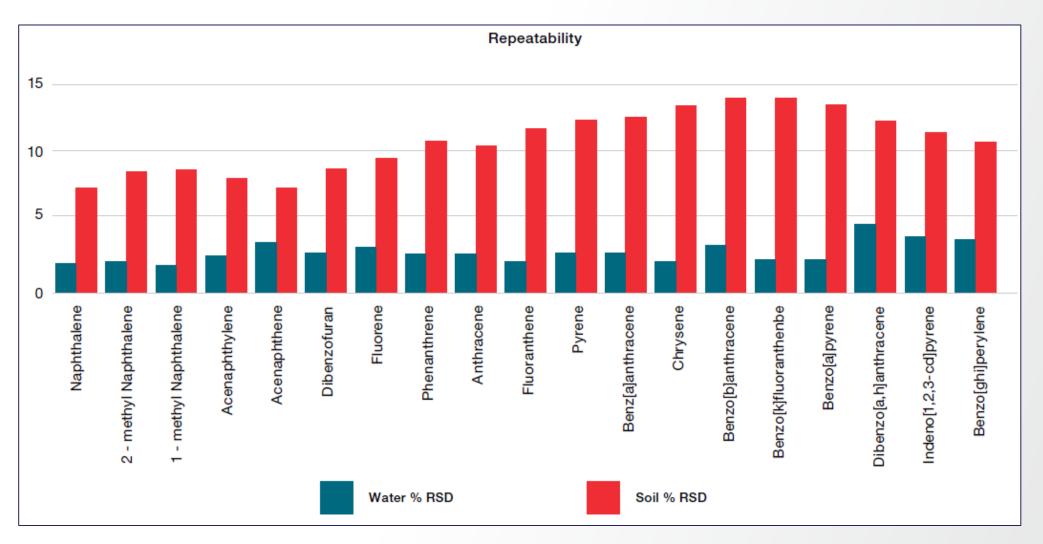
- Average relative response factor (AvRF) calibration variation below EPA Method 8270E criteria (%RSD < 15%)
- Quantitation possible at trace levels and high contamination levels with single calibration curve

Performance towards PAH analysis in water and soil

Repeatability in sample matrices

2

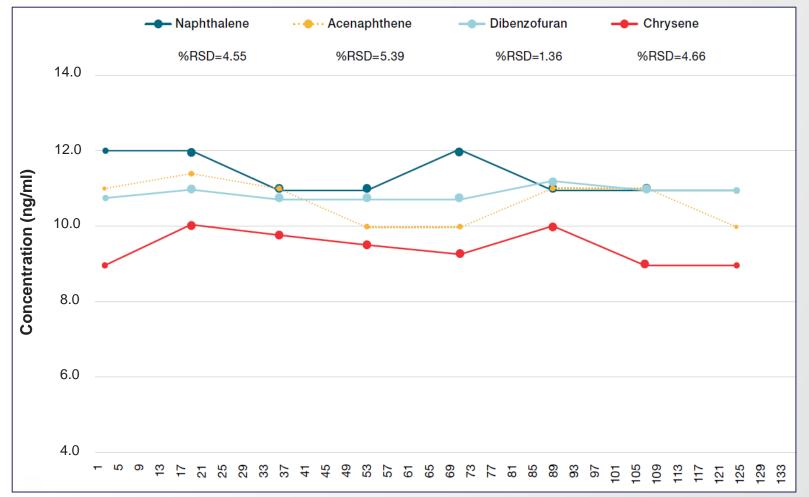
Instrument robustness using EPA method 8270E


3

In sequencing tune and calibration checks

Repeatability

• 20 ng/mL spiked in blank water and soil QC matrices (n = 10)



Reproducibility – Water analysis

Water QC sample at 10 ng/ml

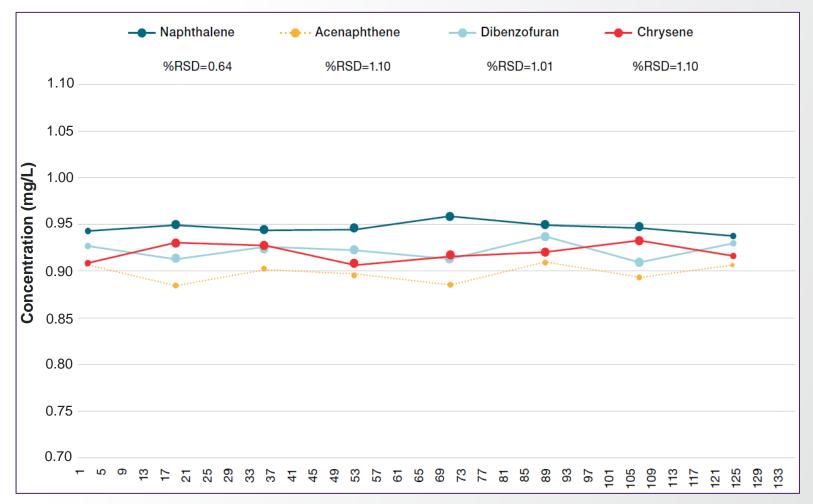
<u>%RSD < 10%</u> after 133 consecutive injections (52 hours) without any GC or MS maintenance:

- Liner change
- Column trimming
- MS cleaning

Injection #

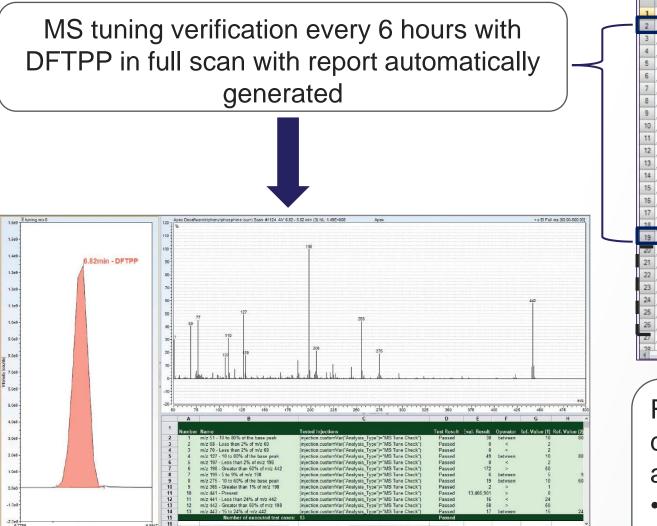
andy.fornadel@thermofisher.com | 4-August-2022

14


Thermo Fisher

Reproducibility – Soil analysis

Soil QC sample at 1.0 mg/L


<u>%RSD < 10%</u> after 133 consecutive injections (52 hours) without any GC or MS maintenance:

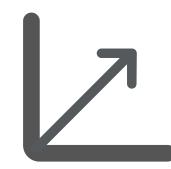
- Liner change
- Column trimming
- MS cleaning

Injection #

In sequence tuning, calibration and QC checks

-	TIC) Na	e	Туре	Position	Instrument Method	Status	*Analysis_Type
1		10	DCM	Unknown	54	PAHS SIM - 10uA - SPLIT 10to1	Finished	Field Sample
2	11		tuning mix 1	Unknown	53	PAHs SIM - 10uA - SPLIT 10to1 - FS	Finished	Field Sample
3		1	QC low water	Unknown	1	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
4		1	QC low soil	Unknown	2	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
5		1	QC middle water	Unknown	3	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
6		1	QC middle soil	Unknown	4	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
7		2	QC high water	Unknown	5	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
8		1	QC high soil	Unknown	6	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
9		2	Cali check 0.0025	Unknown	10	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
10		2	s1	Unknown	55	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
11		7	s2	Unknown	56	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
12		2	s3	Unknown	57	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
13		12	s4	Unknown	58	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
14		1	s5	Unknown	59	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
15		1	s6	Unknown	60	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
16		1	s7	Unknown	61	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
17		1	s8	Unknown	62	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
18		問	s9	Unknown	63	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
19		1	tuning mix 2	Unknown	53	PAHs SIM - 10uA - SPLIT 10to1 - FS	Finished	Field Sample
20		3	Call check 0.005	Unknown	11	PAHS SIM - TOUA - SPLIT 10toT	Finished	Field Sample
21		1	QC low water 2	Unknown	1	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
22		2	QC low soil 2	Unknown	2	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
23		1	QC middle water 2	Unknown	3	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
24		7	QC middle soil 2	Unknown	4	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
25		1	QC high water 2	Unknown	5	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
26		2	QC high soil 2	Unknown	6	PAHs SIM - 10uA - SPLIT 10to1	Finished	Field Sample
21		13	s10	Unknown	04	AHS SIM - TOUA - SPLIT 10101	Finishea	Field Sample
29		1	c11	Linknown	65	AHe SIM - 100A - SPLIT 10to1	Finishod	Field Sample

Thermo Fi


Routine calibration and sample QC checks at different concentrations to ensure analysis accuracy

- Calibration accuracy: ± 10%
- Spiked recovery: 80 120 %

Conclusions

Efficient chromatographic separation within 14.5 min with minimal peak broadening by late eluting compounds and isobaric interferences avoided

Linear dynamic range over 4 orders of magnitude allowing multiple sample types to be analyzed on a single calibration curve.

Robust analysis of PAHs was demonstrated with %RSD < 10% for sample QCs after 133 consecutive injections with no GC or MS maintenance

Spike recoveries of sample QC range from 80-120% with method detection limits ranging from 0.5 – 7.6 pg on column

In sequence tuning and report generation automatically provides compliance requirements for EPA method 8270E and allowing for maximum instrument up time

Thank you

18 andy.fornadel@thermofisher.com | 4-August-2022