#### **Thermo Fisher** s c | e N T | F | C

Strategies for Ultra Low-level Detection and Quantification of Short- and Long-Chain Per- and Polyfluoroalkyl Substances (PFAS) by Direct Injection LC-MS/MS

#### Ed George

Market Manager LSMS Environmental, Food, and Beverage August 4, 2022 NEMC 2022 Crystal City, VA

The world leader in serving science





### **Overview**

- Part 1: A single LC-MS/MS method was developed to measure various PFAS classes, including perfluoronated ether acids in surface by direct injection
  - A Thermo Scientific TSQ Altis Plus MS and Vanquish UHPLC system was used to measure quantitative performance of PFAS in surface water samples via a 25 µL direct injection.
  - Method was developed for 43 target PFAS compounds.
  - PFAS calibration curves ranged from 0.5 1000 ng/L, using internal calibration.
- Part 2: Method optimization strategies for direct injection for both short and longer chain PFAS-Aqueous samples and samples containing a high concentration of organic solvent (>95%)
  - LC system set-up with large sample loop and solvent sandwich injections
  - LC configurations available for obtaining high throughput and/or improved sensitivity

# **Experimental – Liquid Chromatography**

### Thermo Scientific Vanquish Flex Binary UHPLC System

- PFAS Delay Column: 3.0 x 50 mm, 1.9 um Hypersil GOLD (Thermo Scientific)
- Analytical Column: 2.1 x 100 mm, 2.2 um Acclaim RSLC C18 (Thermo Scientific)
- Column Temp: 40 C
- Mobile Phase A: H<sub>2</sub>O with 2% MeOH + 2 mM Am. Acetate + 0.1% HOAc
- Mobile Phase B: MeOH with  $2\% H_2O + 2 \text{ mM Am}$ . Acetate + 0.1% HOAc
- Gradient: see table
- Injection Volume: 25 uL
- Sample Temp: 20 C

| No | Time    | Flow<br>[ml/min] | %В       | Curve |
|----|---------|------------------|----------|-------|
| 1  | 0.000   |                  | Run      |       |
| 2  | 0.000   | 0.400            | 20.0     | 5     |
| 3  | 1.000   | 0.400            | 50.0     | 5     |
| 4  | 15.000  | 0.400            | 100.0    | 5     |
| 5  | 17.000  | 0.400            | 100.0    | 5     |
| 6  | 17.200  | 0.400            | 20.0     | 5     |
| 7  | 22.500  | 0.400            | 20.0     | 5     |
| 8  | New Row |                  |          |       |
| 9  | 22.500  |                  | Stop Run |       |

### Thermo Fisher

## **Experimental – Liquid Chromatography**

#### PFAS Kit Retrofit & Delay Column setup



PEEK Tubing (from Mobile Phase Reservoirs to Vacuum Degasser)

# **Experimental – Liquid Chromatography**

Strong Solvent Loop added in autosampler: Large volume direct injections



**Thermo Fisher** 

SCIEN 1

Peak shape for PFBA is maintained up to 25 uL inj. of 50% MeOH solution

# **Experimental – Mass Spectrometry**

#### Thermo Scientific TSQ Altis Plus

- Ionization Mode: HESI, Negative ion mode
  - Source Parameters: see figure at right
- MS Acquisition Mode: Timed Selected Reaction Monitoring (SRM)
- SRM Cycle Time: 0.4 s
- Quad Isolation Width: Q1, Q3 = Unit (0.7 Da FWHM)

| lon | Source Properties           |              |
|-----|-----------------------------|--------------|
|     | Ion Source Type             | H-ESI 🔹      |
|     | Spray Voltage               | Static 🔹     |
|     | Positive Ion (V)            | 3500         |
|     | Negative lon (V)            | 1000         |
|     | Current LC Flow (µL/min) 0  | Get Defaults |
|     | Sheath Gas (Arb)            | 50           |
|     | Aux Gas (Arb)               | 10           |
|     | Sweep Gas (Arb)             | 1.5          |
|     | lon Transfer Tube Temp (°C) | 175          |
|     | Vaporizer Temp (°C)         | 250          |
|     |                             |              |

### **Experimental – Sample Prep**

#### **PFAS Calibration Standard Solutions**

- Standard solutions were provided by Wellington Labs. Standards were stored at 4 C until needed.
- Final calibration standard solutions were prepared over a concentration range 0.5-1000 ng/L in 50% MeOH.
- The calibration standards were spiked with isotopically-labeled standards to a final concentration of 50-400 ng/L.
- All calibration solutions were prepared in amber glass autosampler vials with polypropylene caps to prohibit PFAS contamination.
- Final PFAS calibration standards were analyzed by LC-MS/MS shortly after preparation to limit sample adsorption losses.

### **Experimental – Sample Prep**

#### Surface Water Samples

- Volume of surface water samples were determined by subtracting the mass of empty polypropylene centrifuge tube from mass of each water containing tube.
- Prepared 25 mL MeOH solution with 100-800 ng/L isotopically-labeled solution. [Note, this is 2X the concentrations used for calibration standard solutions.]
- This methanolic solution was added to polypropylene tubes at an equal volume to the surface water samples.
- After thoroughly vortexing surface water solutions, ~0.5 mL was transferred to amber glass autosampler vials with polypropylene caps for LC-MS/MS analyses.

### **PFAS Method**

- Example PFAS data via direct injection on TSQ Altis Plus
  - Solvent Blank PFAS contamination
  - Effect of Ion Transfer Tube temperature on PFAS

![](_page_8_Picture_4.jpeg)

### Full-scan MS & MS/MS (m/z 263, PFPeA isobar)

Background ions detected: ESI(-) at 90% Mobile Phase B

![](_page_9_Figure_2.jpeg)

Thermo Fisher

Background has ethylene glycol signature; MS2 of m/z 263 shows loss of CO<sub>2</sub>

# **PFAS Contamination – Solvent Blanks**

#### 50% MeOH

![](_page_10_Figure_3.jpeg)

### **Effect of TSQ Ion Transfer Tube Temperature**

#### 100 ng/L PFAS: Perfluoronated ether acids, sulfonates and carboxylic acids

![](_page_11_Figure_2.jpeg)

#### **ITT Temp = 175 C**

![](_page_11_Figure_4.jpeg)

All PFAS classes show comparable or improved response at lower ITT temperature

### **Quantitation Results – PFAS Stds.**

- Examples of LC-MS/MS data for direct injection of PFAS standards
  - Chromatogram displays near LODs
  - Calibration curves
  - Final table of estimated LODs

![](_page_12_Picture_5.jpeg)

## **Example Chromatograms near LOD**

#### PFBA (in 50% MeOH, 25 uL inj.)

![](_page_13_Figure_3.jpeg)

### **Calibration Curve: PFBA**

#### 2 – 1000 ng/L, Linear, 1/x weighting

![](_page_14_Figure_3.jpeg)

PFBA (PAR30) has linear regression  $R^2 = 0.9986$  over 3 decade dynamic range

### **Example Chromatograms near LOD**

#### 4:2 FTS (in 50% MeOH, 25 uL inj.)

![](_page_15_Figure_3.jpeg)

#### Est. LOD 4:2FTS is 0.25 ng/L (6.25 fg on-column)

### Calibration Curve: 4:2FTS

#### 0.5 – 1000 ng/L, Linear, 1/x weighting

![](_page_16_Figure_3.jpeg)

4:2FTS (PAR30) has linear regression R<sup>2</sup> = 0.9981 over 3.5 decade dynamic range

### **Example Chromatograms near LOD**

#### HFPO-DA (in 50% MeOH, 25 uL inj.)

![](_page_17_Figure_3.jpeg)

18 ed.george@thermofisher.com | 4-Aug-2022

### **Calibration Curve: HFPO-DA**

#### 0.5 – 1000 ng/L, Linear, 1/x weighting

![](_page_18_Figure_2.jpeg)

HFPO-DA (PAR30) has linear regression  $R^2 = 0.9985$  over 3.5 decade dynamic range

## **Example Chromatograms near LOD**

#### PFOA (in 50% MeOH, 25 uL inj.)

![](_page_19_Figure_3.jpeg)

Est. LOD PFOA is 1.0 ng/L (25 fg on-column); limited by blank contamination

### **Calibration Curve: PFOA**

#### 0.5 – 1000 ng/L, Linear, 1/x weighting

![](_page_20_Figure_3.jpeg)

**PFOA (PAR30)** has linear regression  $R^2 = 0.9985$  over 3.5 decade dynamic range

### **Example Chromatograms near LOD**

#### 9CI-PF3ONS, (in 50% MeOH, 25 uL inj.)

![](_page_21_Figure_3.jpeg)

22 ed.george@thermofisher.com | 4-Aug-2022

# **Calibration Curve: 9CI-PF3ONS**

#### 0.5 – 1000 ng/L, Linear, 1/x weighting

![](_page_22_Figure_3.jpeg)

9CI-PF3ONS (PAR30) has linear regression R<sup>2</sup> = 0.9972 over 3.5 decade dynamic range

### Table of PFAS Compounds – LODs

| Analyte                                             | Acronym      | LOD (ng/L)  | LOD (fg OC) |
|-----------------------------------------------------|--------------|-------------|-------------|
| N-ethyl perfluorooctanesulfonamidoacetic acid       | NEtFOSAA     | 1           | 25          |
| N-methyl perfluorooctanesulfonamidoacetic acid      | NMeFOSAA     | 2           | 50          |
| Perfluorobutanoic acid                              | PFBA         | 2 (est.)    | 50          |
| Perfluorobutanesulfonic acid                        | PFBS         | 0.5         | 12.5        |
| 1H,1H,2H,2H-Perfluorodecane sulfonic acid           | 8:2FTS       | 1           | 25          |
| Perfluorodecane sulfonic acid                       | PFDS         | 0.5         | 12.5        |
| Perfluorodecanoic acid                              | PFDA         | 0.25 (est.) | 6.25 (est.) |
| Perfluorododecanoic acid                            | PFDoA        | 0.25 (est.) | 6.25 (est.) |
| Perfluoroheptane sulfonic acid                      | PFHpS        | 0.5         | 12.5        |
| Perfluoroheptanoic acid                             | PFHpA        | 0.5         | 12.5        |
| 1H,1H,2H,2H-Perfluorohexane sulfonic acid           | 4:2FTS       | 0.25 (est.) | 6.25 (est.) |
| Perfluorohexanesulfonic acid                        | PFHxS        | 0.5         | 12.5        |
| Perfluorohexanoic acid                              | PFHxA        | 1           | 25          |
| Perfluorononane sulfonic acid                       | PFNS         | 0.5         | 12.5        |
| Perfluorononanoic acid                              | PFNA         | 0.25 (est.) | 6.25 (est.) |
| 1H,1H,2H,2H-Perfluorooctane sulfonic acid           | 6:2FTS       | 0.5         | 12.5        |
| Perfluoro-1-butanesulfonamide                       | FBSA         | 0.25 (est.) | 6.25 (est.) |
| Perfluoro-1-hexanesulfonamide                       | FHxSA        | 0.25 (est.) | 6.25 (est.) |
| Perfluoro-1-octanesulfonamide                       | FOSA         | 0.5         | 12.5        |
| Perfluorooctanesulfonic acid                        | PFOS         | 0.5         | 12.5        |
| Perfluorooctanoic acid                              | PFOA         | 0.25 (est.) | 6.25 (est.) |
| Perfluoropentanoic acid                             | PFPeA        | 5           | 125         |
| Perfluoropentanesulfonic acid                       | PFPeS        | 0.5         | 12.5        |
| Perfluorotetradecanoic acid                         | PFTeDA       | 0.25 (est.) | 6.25 (est.) |
| Perfluorotridecanoic acid                           | PFTrDA       | 0.25 (est.) | 6.25 (est.) |
| Perfluoroundecanoic acid                            | PFUnA        | 0.25 (est.) | 6.25 (est.) |
| Hexafluoropropylene oxide dimer acid                | HFPO-DA      | 0.25 (est.) | 6.25 (est.) |
| 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid | 11CI-PF2OUdS | 0.25 (est.) | 6.25 (est.) |
| 9-chlorohexadecafluoro-3-oxanone-1-sulfonic acid    | 9CI-PF3ONS   | 0.25 (est.) | 6.25 (est.) |
| 4,8-dioxa-3H-perfluorononanoic acid                 | ADONA        | N.A.        | N.A.        |

**ThermoFisher** SCIENTIFIC

- Data from a 25 uL direct injection of PFAS standards in 50% MeOH
- LODs are defined as lowest concentration where the compound is based on the response difference between the 0.5 ng/L standard and solvent blank.
- Concentrations for PFAS Sulfonates are <u>not</u> corrected for salt form or for presence of branched isomers

![](_page_24_Picture_0.jpeg)

### **Results**

Measurement of PFAS in Surface Water samples

25 ed.george@thermofisher.com | 4-Aug-2022

# Example Chromatograms – Spiked Surface Water Samples

#### PFMOAA (in 50% MeOH, 25 uL inj.)

![](_page_25_Figure_2.jpeg)

**Thermo Fisher** 

SCIEN

**PFMOAA** was observed in 2 of 3 surface water samples

# **Example Chromatograms – Surface Water Samples**

### PFO2HxA (in 50% MeOH, 25 uL inj.)

![](_page_26_Figure_2.jpeg)

#### **PFO2HxA** is observed in 3 of 3 surface water samples

# **Example Chromatograms – Surface Water Samples**

### HFPO-DA (in 50% MeOH, 25 uL inj.)

![](_page_27_Figure_2.jpeg)

HFPO-DA is observed in all surface water samples, including blank

# **Example Chromatograms – Surface Water Samples**

### PFNA (in 50% MeOH, 25 uL inj.)

![](_page_28_Figure_2.jpeg)

Thermo Fisher

**PFNA** is observed in all surface water samples, including blank

### **Conclusions**

- Thermo Scientific TSQ Altis Plus MS system provides excellent quantitative performance for measuring PFAS in surface water samples via 25 µL direct injection LC-MS/MS down to low single and or sub- ng/L concentrations.
- A Single LC-MS/MS method was used to measure wide variety PFAS classes, including perfluoronated ether acids.
- Nearly all (40 of 43) targeted PFAS compounds have LODs at or below 1 ng/L for neat PFAS solutions. Lower LODs in several cases (e.g., PFOA) were limited by contamination in solvent blanks.
- PFAS calibration curves from 0.5 1000 ng/L, using internal calibration, yielded linear regression calibrations with r<sup>2</sup> > 0.995.
- Surface water samples were analyzed by adding equal volume of methanol containing isotopically-labeled PFAS standards. Nearly all targeted PFAS compounds were able to be measured in spiked surface water samples at 1-2 ng/L levels (after correcting for 1:1 dilution).

# Addressing the Main PFAS Analytical Challenges

How do I optimize LC injection volumes to obtain highest MS sensitivity?

![](_page_30_Figure_2.jpeg)

- Heterogenous group of alkyl compounds:
  - Short-chain (C4-C8) •
  - Long-chain (C8-C18) •
- $\rightarrow$  solubility, adsorption, LC retention

![](_page_30_Figure_7.jpeg)

- **Ubiquitous occurrence:** 
  - Nature, clothes •
  - Laboratory equipment
  - (U)HPLC system
- $\rightarrow$  consumable selection, blank controls

![](_page_30_Figure_13.jpeg)

**Thermo Fi** 

- **Guidelines:** 
  - Sample preparation
  - Sample solvents
  - Limit of quantitation

 $\rightarrow$  different flavours of PFAS analysis

31 ed.george@thermofisher.com | 4-Aug-2022

# An Alternate Liquid Chromatography Set-Up for Large **Volume Injections**

Vanquish Core HPLC system setup

![](_page_31_Picture_2.jpeg)

**Custom Injection Program** 

- Sample loop: 1000µL
- Sandwich injection
- In needle mixing

#### **Strong Solvent Loop**

Volume: 46.2 µL

#### Capillary

Sampler-column Viper MP35N

#### **Delay Column**

Accucore™ aQ, 3.0 x 50 mm, 2.6 µm)

![](_page_31_Figure_13.jpeg)

| # | Connection<br>between         | Description                                 |
|---|-------------------------------|---------------------------------------------|
| 1 | Pump Out –<br>Port 1          | 0.18 x 350mm, SST, P/N 6040.2375            |
| 2 | Port 2 – Viper<br>Union       | Strong Solv ent Loop, SST, P/N<br>6036.2200 |
| 3 | Viper Union –<br>Column Inlet | 0.10 x 350 mm, MP35N, P/N<br>6042.2340      |
| 4 | Column Outlet -<br>Detector   | 0.10 x 450 mm, MP35N, P/N<br>6042.2340      |

**Thermo Fisher** SCIENTIELC

![](_page_31_Picture_15.jpeg)

![](_page_31_Picture_16.jpeg)

32

### **LC Method**

| LC System:        | Vanquish Core Binary HPLC System                  |
|-------------------|---------------------------------------------------|
| Column:           | Acclaim™ Polar Advantage, 2.1 mm x 100 mm, 2.2 µm |
| Eluent A:         | Water, 5 mM ammonium formate, 0.1% formic acid    |
| Eluent B:         | Methanol, 5 mM ammonium formate, 0.1% formic acid |
| Flow rate:        | 400 μL/min                                        |
| Injection volume: | Custom Injection Program (user defined)           |

#### Injection volume:

| No | Time    | Flow     | %B            | Curve |  |  |
|----|---------|----------|---------------|-------|--|--|
| 1  | -2.000  | E        | Equilibration | 1     |  |  |
| 2  | -2.000  | 0.400    | 30.0          | 5     |  |  |
| 3  | New Row |          |               |       |  |  |
| 4  | 0.000   |          | Run           |       |  |  |
| 5  | 0.000   | 0.400    | 30.0          | 5     |  |  |
| 6  | 0.100   | 0.400    | 30.0          | 5     |  |  |
| 7  | 1.100   | 0.400    | 50.0          | 5     |  |  |
| 8  | 15.100  | 0.400    | 100.0         | 5     |  |  |
| 9  | 17.600  | 0.400    | 100.0         | 5     |  |  |
| 10 | 17.800  | 0.400    | 30.0          | 5     |  |  |
| 11 | 22.100  | 0.400    | 30.0          | 5     |  |  |
| 12 | New Row |          |               |       |  |  |
| 13 | 22.100  | Stop Run |               |       |  |  |
|    |         |          |               |       |  |  |

![](_page_32_Figure_5.jpeg)

# **Custom Injection Program- High Solvent Content**

#### Vanquish Split SamplerCT

Temperature: 5 °C

Wash solvent: methanol/water (95/5; v/v)

#### Program: Solvent san

#### Solvent sandwich injection- 3 x 25 µL sample

| Gene | ral Settings             | User Defined Progra   | am Method T    | ransfer  | Temperature C    | ontrol   |              |                |               |              |                 |
|------|--------------------------|-----------------------|----------------|----------|------------------|----------|--------------|----------------|---------------|--------------|-----------------|
| ● R  | Replace normal injection |                       |                |          |                  |          |              |                |               |              |                 |
| O N  | ormal injecti            | on with liquid handli | ng             |          |                  |          |              |                |               |              |                 |
|      |                          | -                     | _              |          |                  |          |              |                |               |              |                 |
| No   | Command                  | F                     | Parameters     |          |                  |          |              |                |               |              |                 |
| 1    | UDP_Prepa                | areLiquidHandling V   | /olume=250 [μ  | d]       |                  |          |              |                |               |              |                 |
| 2    | UDP_Need                 | lleWash E             | Ouration=5 [s] |          |                  |          |              |                |               |              |                 |
| 3    | UDP_Draw                 | F                     | Position=SR:1, | Volume=  | System.Injectio  | .Custor  | mVariables.U | JDP_vol_01.    | Speed=10 [µl/ | /s]. NeedleH | eight=2000 [μm] |
| 4    | UDP_Need                 | lleWash E             | Ouration=5 [s] |          |                  |          |              |                |               |              |                 |
| 5    | UDP_Draw                 |                       |                |          |                  |          |              |                |               |              |                 |
| 6    | UDP_Need                 | lleWash D             | Duration=5 [s] |          |                  |          |              |                |               |              |                 |
| 7    | UDP_Draw                 | F                     | Position=SR:1, | Volume=  | System.Injectio  | .Custor  | mVariables.l | JDP_vol_02     | Speed=10 [µl/ | /s], NeedleH | eight=2000 [μm] |
| 8    | UDP_Need                 | lleWash D             | Ouration=5 [s] |          |                  |          |              |                |               |              |                 |
| 9    | UDP_Draw                 |                       |                |          |                  |          |              |                |               |              |                 |
| 10   | UDP_Need                 | lleWash E             | Duration=5 [s] |          |                  |          |              |                |               |              |                 |
| 11   | UDP_Draw                 | F                     | Position=SR:1, | Volume=  | System.Injectio  | n.Custor | mVariables.l | JDP_vol_01.    | Speed=10 [µl/ | /s], NeedleH | eight=2000 [µm] |
| 12   | UDP_Need                 | lleWash D             | Duration=5 [s] |          |                  |          |              |                |               |              |                 |
| 13   | UDP_Draw                 |                       |                |          |                  |          |              |                |               |              |                 |
| 14   | UDP_Need                 | lleWash E             | Duration=5 [s] |          |                  |          |              |                |               |              |                 |
| 15   | UDP_Draw                 | F                     | Position=SR:1, | Volume=  | System.Injectio  | n.Custor | mVariables.l | JDP_vol_02,    | Speed=10 [µl/ | /s], NeedleH | eight=2000 [µm] |
| 16   | UDP_Need                 | lleWash D             | Ouration=5 [s] |          |                  |          |              |                |               |              |                 |
| 17   | UDP_InNee                | edleMix V             | /olume=10 [μl] | , DrawSp | eed=10 [µl/s]. D | ispense  | Speed=10 [   | µl/s], Cycles= | 5             |              |                 |
| 18   | UDP_Wait                 | 1                     | 0 [s]          |          |                  |          |              |                |               |              |                 |
| 19   | UDP_Prepa                | arelnject             |                |          |                  |          |              |                |               |              |                 |
|      |                          |                       |                |          |                  |          |              |                |               |              |                 |

![](_page_33_Figure_8.jpeg)

### **Chromatogram- Solvent Sandwich Injection**

### Acclaim<sup>™</sup> Polar Advantage, 2.1 mm x 100 mm, 2.2 µm

![](_page_34_Figure_3.jpeg)

Long-chain PFAS approach- Requires higher percent organic in sample

### **Calibration Curves- Sandwich Injection**

#### PFTreA at low end of calibration range

![](_page_35_Figure_3.jpeg)

### **Chromatogram- Short Chain Aqueous Injection**

### Acclaim<sup>™</sup> Polar Advantage, 2.1 mm x 100 mm, 2.2 µm

![](_page_36_Figure_3.jpeg)

Short-chain PFASapproach- Highly aqueous sample, longer chains compounds less soluble

### **Calibration Curves**

#### PFBS at low end of calibration range

![](_page_37_Figure_3.jpeg)

\* Triplicates were performed for all calibration levels. However, sequence interruption led to n=2 for calibration levels 10-100 ng/L

### Limitation

#### Short-Chain Approach

![](_page_38_Figure_3.jpeg)

Expected Vial adsorption of mid- and long-chain PFAS using mobile phase A.

## **Comparison of Short- and Long-Chain Approach**

| Compound name                                             | Retention time[min] | Limit of quantitation [ng/L]<br>(long-chain approach) | Limit of quantitation [ng/L]<br>(short-chain approach) |                |
|-----------------------------------------------------------|---------------------|-------------------------------------------------------|--------------------------------------------------------|----------------|
| PFBA Perfluorobutanoic acid                               | 6.51                | 20                                                    | 5                                                      |                |
| PFPe <b>A</b> Perfluoropentanoic <b>acid</b>              | 8.86                | 20                                                    | 5                                                      |                |
| FtS 4:2                                                   | 9.82                | 10                                                    | 2                                                      |                |
| PFB <mark>S</mark> Perfluorobutane <mark>sulfonate</mark> | 10.09               | 1                                                     | 1                                                      |                |
| PFHx <b>A</b> Perfluorohexanoic acid                      | 10.73               | 2                                                     | 1                                                      | Mobile phase A |
| PFPeS Perfluoropentansulfonate                            | 11.75               | 1                                                     | 1                                                      | 225 uL         |
| PFHp <b>A</b> Perfluoroheptanoic <b>acid</b>              | 12.18               | 2                                                     | 1                                                      |                |
| PFHx <mark>S</mark> Perfluorohexanesulfonate              | 13.04               | 1                                                     | 1                                                      |                |
| PFOA Perfluorooctanoicacid                                | 13.34               | 5                                                     | 2                                                      |                |
| PFHp <mark>S</mark> Perfluoroheptanesulfonate             | 14.11               | 2                                                     | 1                                                      | J              |
| PFNA Perfluorononanoic acid                               | 14.31               | 2                                                     | 2                                                      |                |
| PFOS Perfluorooctanesulfonate                             | 15.01               | 1                                                     | 2                                                      |                |
| NMeFOSAA                                                  | 15.10               | 5                                                     | 5                                                      |                |
| PFDA Perfluorodecanoic acid                               | 15.13               | 1                                                     | 2                                                      |                |
| PFNS Perfluorononanesulfonate                             | 15.79               | 1                                                     | 1 (out of range: Amnt.Dev.  RSD-AMT)                   | 96% methanol   |
| PFUd <b>A</b> Perfluoroundecanoic acid                    | 15.83               | 2                                                     | 1 (out of range: Amnt.Dev.  RSD-AMT)                   | 75 μL          |
| PFDoA Perfluorododecanoic acid                            | 16.45               | 1                                                     | 1 (out of range: Amnt.Dev.  RSD-AMT)                   |                |
| PFDS Perfluorodecanesulfonate                             | 16.46               | 2                                                     | 1 (out of range: Amnt.Dev.  RSD-AMT)                   |                |
| PFTriA Perfluorotridecanoic acid                          | 16.98               | 1                                                     | 1 (out of range: Amnt.Dev.  RSD-AMT)                   |                |
| PFTreA Perfluorotetradecanoic acid                        | 17.44               | 1                                                     | 1 (out of range: Amnt.Dev.  RSD-AMT)                   |                |

**Thermo Fisher** SCIENTIFIC

### **PFAS Decision Tree – Vanquish UHPLC Systems**

Vanquish Duo UHPLC System for Tandem LC-MS

Vanquish Online SPE HPLC and UHPLC-Systems

Thermo Fisher

![](_page_40_Figure_3.jpeg)

![](_page_41_Picture_0.jpeg)

**ThermoFisher** SCIENTIFIC

42 ed.george@thermofisher.com | 4-Aug-2022