

Figure 2. For direct analysis, samples are pipetted into microtiter wellplates and the 2970 nm laser is focused at the top of the sample volume. For MSI, tissues are thaw mounted onto a glass slide, placed on the translation stage, cooled to -8°C, and exposed to controlled ambient humidity to form an ice matrix on the surface of the tissue. The mechanism for ionization is the same across both analysis types. IR-MALDESI is coupled to a high resolution, accurate mass Orbitrap Exploris 240 mass spectrometer (Thermo Scientific, Bremen, Germany) for mass analysis. Flexmix was used as a model HTS sample for the optimization of NextGen IR-MALDESI component geometries. The optimized factors resulting from the DOE experiments are labelled with its respective optimal value in red.

Next Generation Infrared Matrix-Assisted Laser Desorption Electrospray Ionization Source for Mass Spectrometry Imaging and High-Throughput Screening <u>Kevan Knizner¹, Jacob P. Guymon², Kenneth P. Garrard^{1,2,3}, Guy Bouvrée⁴, Jeffery G. Manni⁵, Jan-Peter Hauschild⁶, Kerstin Strupat⁶, Kyle Fort⁶,</u>

Lee Earley⁷, Eloy Wouters⁷, Fan Pu⁷, Andrew J. Radosevish⁸, Nathaniel L. Elsen⁸, Jon D. Williams⁸, Mark R. Pankow², David C. Muddiman^{1,3}

¹FTMS Laboratory for Human Health Research, Department of Chemistry, North Carolina State University, Raleigh, NC, 27695, USA; ²Precision Engineering Consortium, Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA; ³Molecular Education, Technology and Research Innovation Center (METRIC), North Carolina State University, Raleigh, NC, 27695, USA; ⁴GB Conseil & Services, Brie-Comte-Robert, FRA;⁵JGM Associates, Inc., Burlington, MA, 01803, USA; ⁶Thermo Fisher Scientific (Bremen) GmbH, 28199 Bremen, GER; ⁷Thermo Fisher Scientific, San Jose, CA, 295134, USA;⁸Drug Discovery Science and Technology, AbbVie Inc., North Chicago, IL, 60064, USA

Figure 3. Measured laser energy as a function of the number of pulses-perburst (PPB) applied to a sample in an IR-MALDESI-MS analysis. The previous generation IR-MALDESI source laser energy is represented as a black square.

Table 1. dsDOE is an effective methodology to optimize a system where multiple factors affect the measured response³. Pierce Flemix calibration solution (Flexmix) was used as a model, direct analysis sample to maximize target ions over a wide *m*/*z* range. The %RSD of SIL-caffeine was used as a measure of ESI variability. Five IR-MALDESI factors were studied to maximize analyte abundances and minimize ESI variability. Significant factors for maximizing Flexmix ion abundances and minimizing ESI variability are represented by a graph. Optimized factor values are shown in red.

Full Factorial Design of Experiments (ffDOE)

Full Factorial Results	Tested	Previous	Updated
Stage Height (mm)	3 - 7	5	7
Sample-Inlet (mm)	1 - 5	5	1
ESI-Sample (mm)	1	1	1
Flowrate (µL/min)	0.5 - 2.5	2	0.5
Energy (mJ)	5 - 6.3	2	6.3
-hla 9 The tested was	produide for the	a full factoria	l decieve of

Table 2. The tested geometries for the full factorial design of experiments. The tested factor range was set based on the optimal factor values from the dsDOE study. The tested range of each factor, the previous factor vlaues, and the updated factor values are listed. The updated values were calulated in JMP DOE software by maximizing Flexmix ion abundances and minimizing the %RSD of SIL-caffeine abundances.

Figure 4. Overlapped mass spectra of the analysis of Flexmix by IR-MALDESI with the updated (red) and previous (black) geometries. Increases in Flexmix ion abundances are shown in the bar chart. The labelled Flexmix ions are in increasing *m*/*z* order. The %RSD of the SILcaffeine abundances is a measure of the ESI variability and is shown in the top right corner of the bar chart.

Conclusions and Future Directions

- The IR-MALDESI source has been redesigned and each component has been upgraded.
- Two DOE experiments were conducted to optimize the geometries of the upgraded IR-MALDESI components for IR-MALDESI-MS.
- The updated geometries and components resulted in a 2.4 average fold increase in target ion abundances.
- Further MSI analyses with the updated geometries will be conducted.

Literature Cited 1) Bagley, et al., *Mass Spectrom. Rev.*, **2021**, 1-32. 2) Barry, et al., *Rapid Commun. Mass Spectrom.*, **2011**, 25, 3527-3536. 3) Hecht, et al., *J. Am. Soc. Mass Spectrom.*, **2016**, 27, 767-785.

Acknowlegements and Funding

We thank Thermo Fisher Scientific (Craig Dufresne) for invaluable discussions regarding the data analysis. We thank Abbvie (Nari Talay, Scott Ugrin) for insight regarding the data analysis. All mass spectrometry measurements were conducted in the Molecular Education, Technology and Research Innovation Center (METRIC) at North Carolina State University. Funding for this study was provided in part by AbbVie and a grant from the NIH (R01GM087964).

