Simultaneous targeted and discovery phosphoproteomics of cell signaling pathways using novel hybrid-DIA acquisition strategy

Ana Martínez-Val¹, Kyle Fort², Giulia Franciosa¹, Claire Koenig¹, Daniel Lopez Ferrer³, Andreas F. Huhmer³, Yasushi Ishihama⁴, Yu-ju Chen⁵, Yue Xuan², Alexander Makarov², Jesper V. Olsen¹

¹Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, DENMARK ²Thermo Fisher Scientific, Bremen, GERMANY

ana.mdval@cpr.ku.dk

³Thermo Fisher Scientific, San Jose, USA ^₄Kyoto University, Kyoto, JAPAN

⁵Academia Sinica, Taipei, TAIWAN

HeLa Peptides 50ug 25ug 12ug 6.25ug	В	SureQuant		DIA		Hyb
		25ug	6.25ug	25ug	6.25ug	25ug
0.05pmol	LMNA:S22 (high abundance)	9e+06 6e+06 3e+06 0e+00 17.0 17.5 18.0 18.5	6e+06 4e+06 2e+06 0e+00 16.5 17.0 17.5 18.0	2.5e+07 2.0e+07 1.5e+07 1.0e+07 5.0e+06 0.0e+00 16.5 17.0 17.5 18.0 18.5 19.0	2.0e+07 1.5e+07 1.0e+07 5.0e+00 0.0e+00 16.5 17.0 17.5 18.0 18.5 19.0	2.0e+07 1.5e+07 1.0e+07 5.0e+06 0.0e+00 18.0 18.5 19.0
		b b c b c c c c c c c c	$2.0e+06 \\ 1.5e+06 \\ 1.0e+06 \\ 5.0e+05 \\ 0.0e+00 \\ 16.0 \\ 16.5 \\ 17.0 \\ 17.5 \\ 18.0 \\$	7.5e+06 5.0e+06 2.5e+06 0.0e+00 16.5 17.0 17.5 18.0 18.5 19.0	2.0e+06 1.5e+06 1.0e+06 5.0e+05 0.0e+00 16.5 17.0 17.5 18.0 18.5 19.0	5e+06 4e+06 3e+06 2e+06 1e+06 0e+00 18.0 18.5 19.0
Heavy Phospho-peptides	TSC2:S939 (medium abundance)	6e+06 4e+06 2e+06 0e+00 6.5 7.0 7.5 8.0	8e+06 6e+06 4e+06 2e+06 0e+00 6.5 7.0 7.5 8.0	3e+07 2e+07 1e+07 0e+00 6.5 7.0 7.5 8.0 8.5	125e+07 1.00e+07 7.50e+06 5.00e+06 2.50e+06 0.00e+00 6.5 7.0 7.5 8.0 8.5	9e+06 6e+06 3e+06 0e+00 7.5 8.0 8.5 9
eLa Phospho-Peptides		7.5e+04 5.0e+04 2.5e+04 0.0e+00 6.5 7.0 7.5 8.0 8.5	6e+04 4e+04 2e+04 0e+00 6.5 7.0 7.5 8.0	3e+07 2e+07 1e+07 0e+00 6.5 7.0 7.5 8.0 8.5	$\begin{array}{c} 6e+05 \\ 4e+05 \\ 2e+05 \\ 0e+00 \\ \hline 6.5 \\ 7.0 \\ 7.5 \\ 8.0 \\ 8.5 \end{array}$	7.5e+04 5.0e+04 2.5e+04 0.0e+00 7.5 8.0 8.5 9.
	BCAR1:Y410 (low abundance)	6e+06 4e+06 2e+06 0e+00 51.0 51.5 52.0 52.5 53.0	$\begin{array}{c} 6e+06 \\ 4e+06 \\ 2e+06 \\ 0e+00 \\ 51.0 \\ 51.5 \\ 52.0 \\ 52.5 \\ 53.0 \end{array}$	1.5e+07 1.0e+07 5.0e+06 0.0e+00 51.5 52.0 52.5 53.0 53.5	$\begin{array}{c} 4e+07\\ 3e+07\\ 2e+07\\ 1e+07\\ 0e+00\\ \hline 51.5\\ 52.0\\ 52.5\\ 53.0\\ 53.5\\ \hline \end{array}$	1.5e+07 1.0e+07 5.0e+06 0.0e+00 52.0 52.25 52.5
SureQuant DIA Hybrid DIA		5e+04 3e+04 2e+04 1e+04 0e+00 51.5 52.0 52.5 53.0 Retention	2.0e+04 1.5e+04 1.0e+04 5.0e+03 0.0e+00 51.0 51.5 52.0 52.5 53.0 n Time (min)	1.2e+06 9.0e+05 6.0e+05 3.0e+05 0.0e+00 51.5 52.0 52.5 53.0 53.5 Reter	1.5e+06 1.0e+06 5.0e+05 0.0e+00 51.5 52.0 52.5 53.0 53.5 attion Time (min)	3e+04 2e+04 1e+04 0e+00 52.0 52.25 52.5

(C) Phospho-sites from the Multipathway Phosphorylation Kit idenfied by HybridDIA targeted scans or SureQuant that are differentially regulated by EGF after 10 minutes stimulaltion and that show differentially regulation by the different kinases inhibited. (D) Profile plot showing the ration Light to Heavy measured in HybridDIA or SureQuant for some relevant EGFR targets.

Full phosphoproteome analysis: Spectronaut directDIA results

5,055 Phospho-sites identified (Loc. Prob >0.75) 611 Phospho-sites identified quantified in at least 75% of the replicates. 1,214 Phospho-sites differential in total (ANOVA FDR<0.05%) 224 Phospho-sites activated due to EGF stimulation (10 minutes)

(E) Full phosphoproteome results obtained from a library-free search of the HybridDIA files

(F) Kinase activity inferred from the full phospho-proteome profiles in the different experimental condition calculated with RoKAI App (v2.1.3).

OLSEN GROUP

Targeted and discovery analysis of EGF stimulation

(A) Overview EGFR signaling pathway with indication of the kinase inhibitors used in the experiment. (B) Experimental workflow for phospho-proteomics analysis of EGFR signaling using the SureQuant[™] Multipathway Phosphopeptide Standard.

Funding: NNF14CC0001 EPIC-XS-823839

CHEK1:S280