Accelerated Solvent Extraction & Ultra-High Performance Liquid Chromatography Coupled with High-Resolution Mass Spectrometry For Analysis of Additives in Polymers For Biomanufacturing Processes

^aSandra Rontree, ^bJeffrey Rohrer, ^cFabrizio Galbiati ^dJonathan Bones and ^bBeibei Huang ^aThermo Fisher Scientific, Stafford House, 1 Boundary Park, Boundary Way, Hemel Hempstead, Hertfordshire, HP2 7GE, United Kingdom; ^bThermoFisher Scientific, 490 Lake Side Drive, Sunnyvale, CA, USA; ^cThermofisher Neuhofstrasse 11, 4153 Reinach, Basel, Switzerland; ^dThe National Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock, Co., Dublin, Ireland

ABSTRACT

To explore the performance of accelerated solvent extraction (ASE) as a technique for the characterization of extractables from single-use bioreactor (SUBs) bags. These plastic assemblies draw concern because they are a potential source of contamination due to extractable and leachable compounds (E&Ls). Characterizing E&Ls from such materials is a necessary step in establishing their suitability for use. Therefore, there is an urgent need for sensitive methods to identify and quantitatively assess compounds in plastic materials. Accelerated solvent extraction (ASE) is a powerful technique that can be reliably used for this purpose.

In this study, Accelerated solvent extraction (ASE) followed by liquid chromatography and Orbitrap-based High-Resolution Accurate Mass (HRAM) mass analysis was found to be an efficient and versatile method for the determination of additives in different multilayer polymer systems from single-use bags. ASE optimization was performed using a design of experiments approach. The type of solvent, temperature, swelling agent addition, static time, and the number of cycles were the selected variables. Optimum conditions were dependent on the type of plastic film. Ethyl acetate and cyclohexane were selected individually as optimum solvents. Optimum temperatures were 90–100 Pressure was set at 1500 psi and extraction time was 30 min in 2 cycles. Swelling agent addition was necessary with polar extraction solvents.

INTRODUCTION

Single-use technologies (SUTs), in particular single-use bioreactors (SUBs), represent an important improvement in biopharmaceutical manufacturing, due to reduced Requirements for cleaning and sterilization while providing increased sterility assurance, reduced manufacturing turnaround times, and the elimination of cleaning validation and its associated costs.¹⁻² SUTs also increase facility flexibility and productivity when compared with traditional stainless steel.¹⁻² Other advantages include reduction of manual handling operations and the ability to create totally closed operating systems, reducing bioburden and contamination risk to the process stream.³ Despite these advantages, SUTs create new challenges in bioprocessing, as various fluids with distinct chemical and physical properties interact with single-use components, producing the extractable (organic and/or inorganic chemical entities) from the plastic material that migrate out of the system and accumulate as leachables.⁴ These substances could jeopardize bioprocess performance and cause cell growth inhibition, loss of expensive cell lines, and reduced yields.

MATERIALS AND METHODS

Square samples for the polymeric film were cut into 0.25 cm² squares using scissors. The sample pieces were dispersed in clean Ottawa sand to prevent coalescence during extraction and loaded into a 10 mL stainless steel extraction cell with a glass fiber filter in the bottom cap. Then, the remaining cell volume was filled with clean Ottawa sand and closed with the cell cap. The cell was placed on a Dionex ASE 350 Accelerated Solvent Extractor, which was programmed as indicated in the accelerated solvent extraction conditions table. With help of the sequence editor, multiple methods with different extraction conditions were accomplished in one run. The extracts were evaporated using the Rocket Synergy 2 Evaporator system. One milliliter of acetonitrile was carefully added to reconstitute the dried sample and then it was centrifuged for 30 min at 13,000 x g. The supernatant was placed in a vial for analysis. The selection of the extraction solvent is crucial to optimize factors governing a successful extraction, such as solubility and mass transfer.6 Solvents recommended for Soxhlet extractions are often also used for ASE.6 However, as higher temperatures and pressure are used in ASE, care must be taken to avoid polymer dissolution.⁵ The ideal situation is one where the extraction is performed at a temperature that causes the maximum swelling without dissolving the polymer.⁶ The solubility of polymers can be broadly predicted using solubility parameters, i.e., Hildebrandt parameter,⁷ (Table 4) wherein the closer the solubility parameters between the polymer and solvent, the more polymer will dissolve in a solvent at lower temperatures than another solvent with a different solubility parameter

Table 1.

Extraction cell size	10 mL			
Preheating	5 min			
Pressure	1,500 psi			
Static time	12 min			
Number of cycles	2			
Flush volume	100%			
Purge time	120 s			
Solvent	Hexane			
	Method I	Method II	Method III	
Cyclohexane (%)	0	0	5	
Temperature (°C)	90	100	90	

Reagents and chemicals: Deionized (DI) water, Type I reagent grade, 18 M Ω ·cm resistivity or better filtered through a 0.2 µm filter immediately before use

Table 2.

UHPLC system	Vanguish Flex system		
MS detector	Q Exactive HF Hybrid Quadrupole-Orbitrap mass spectrometer		
Column	Thermo Scientific [™] Accucore [™] C18 column, 2.1 × 100 mm, 2.6 µm particle size		
Mobile phase	A: 0.1% formic acid, 5 mM ammonium formate, pH 3 B: 5 mM ammonium formate in 90:10 (v/v) acetonitrile/water		
Gradient	5% B (0–1.2 min) 5–95% B (1.2–18 min) 95% B (18–26 min) 5–95% B (26.1–29 min) 5% B (29.1–32 min)		
Flow rate	0.4 mL/min		
Injection volume	5 μL		
Column temperature	50 °C, still air mode		
Run time	32 min		
Mass spectrometric	detection		
lon source	Electrospray ionization (ESI), negative mode		
HESI source	Sheath gas flow rate: 50 Aux gas flow rate: 10 Sweep gas flow rate: 0 Spray voltage (kV): 3.5 Capillary temp. (°C): 300 S-lens RF level: 60 Aux gas heater temp (°C): 430		
Experiments ¹³	Full MS/ddMS ² with inclusion list		

Operating conditions for UHPLC-HRMS system

Figure 1. Distribution of identified compounds per number of ASE methods, (A); and per type of ASE method, (B)

Mass [<i>m</i> /z]	Formula [M]	Species	CS [z]	Polarity
621.31045	C33H50O7P2	+ H	1	Positive
647.45876	C42H63O3P	+ H	1	Positive
663.45367	C ₄₂ H ₆₃ O ₄ P	+ H	1	Positive
205.15979	C14H220	- H	1	Negative
475.29717	C ₂₈ H ₄₃ O ₄ P	+ H	1	Positive
114.09134	C ₆ H ₁₁ NO	+ H	1	Positive
277.12818	C12H2007	+ H	1	Positive
267.17197	C ₁₂ H ₂₇ O ₄ P	+ H	1	Positive
192.15942	C ₉ H ₂₁ NO ₃	+ H	1	Positive
338.34174	C ₂₂ H ₄₃ NO	+ H	1	Positive
431.17878	C26H26N2O2S	+ H	1	Positive
225.19614	C13H24N2O	+ H	1	Positive
250.11862	C ₁₂ H ₁₅ N ₃ O ₃	+ H	1	Positive
277.17982	C ₁₇ H ₂₄ O ₃	+ H	1	Positive
219.17434	C15H220	+ H	1	Positive
784.52591	C48H69N3O6	+ H	1	Positive
531,47717	CHO.	+ H	1	Positive

the ion to be fragmented

in plastic films

	Formula	Retention time (min)	Exact mass [M+H]*	Mass error (ppm)	Name	CAS annotation	ASE Me I	thod (*e7 II	count:
1	C ₂₃ H ₅₀ O ₇ P ₂	22.37	621.3104	-0.08	Oxidised Irgafos 126		1.344	1.322	0.9
6	C ₁₂ H ₂₀ O ₇	9.12	277.1282	0	2-hydroxy-1,2,3-propanetricarboxylic acid, triethyl ester (Citroflex [®] 2)	77-93-0	0.21	0.19	0.17
7	C12H27O4P	14.69	267.1720	0	Tributyl phosphate	126-73-8	2.47	2.31	2.00
8	C22H43NO	21.89	338.3413	-1.18	c/s-13-docosenoic amide (Erucamide)	112-84-5	24.3	10.3	14.2
9	C ₂₆ H ₂₆ N ₂ O ₂ S	22.37	431.1787	-0.23	2,5-bis(5-tert-butylbenzoxazol-2-yi)thiophene (Uvitex® OB)	7128-64-5	0.099	0.15	0.11
10	C12H15N3O3	12.53	250.1186	0	2,4,6-triallyloxy-1,3,5-triazine(Triallyl cyanurate)	101-37-1	1.35	1.22	1.07
11	C ₁₇ H ₂₄ O ₃	15.29	277.1797	-0.36	7,9-di-tert-butyl-1-oxaspiro[4.5]deca- 6,9-diene-2,8-dione (Irganox 1076 degradation product)	82304-66-3	0.67	0.77	0.59
12	C15H22O	14.03	219.1745	0.91	3,5-di-tert-butylbenzaldehyde (Degradation product from BHT)	17610-00-3	0.46	0.46	0.42
					Irgafos 168 and derivatives				
4	C14H22O	15.97	205.1592 [M-H] ⁻	-2.88	2,4-di-tert-butylphenol (DtBP)	96-76-4	0.032	0.011	0.039
5	C28H43O4P	15.92	475.2973	0.21	bis(2,4-di-tert-butylphenyl)phosphate (bDtBPP)	69284-93-1	0.52	0.59	0.27
3	C40H004P	27.06	663.4540	0.45	Tris(2,4-di-tert-butylphenyl)phosphate (Oxidised Irgafos 168)	95906-11-9	95.4	15.6	15.8
2	C42H03O3P	27.33	647.4593	0.77	Tris(2,4-di-tert-butylphenyl) phosphite (Irgafos 168)	31570-04-4	1.29	15.2	12.3

One hundred thirty compounds were identified from the plastic films by library identity searches using Compound Discoverer 3.2 software, demonstrating the performance and confidence of the applied analytical method for the detection and identification of the extracted compounds

Table 3. Full MS/ddMS² inclusion list

Note: Formula [M] stands for the composition of the active compound, and CS [z] for the charge state of

Table 4. Some identified common additives

Figure 2. Single-use bioreactor

The present work explored the performance of ASE as an extraction technique for characterization of the plastic films (inner layers) from single-use bioreactor bags

Figure 3. Classification of identified compounds using the three ASE methods

	Total	Method I	Method II	Method III
	130	122	89	63
Selectively extracted	44	36	5	3
		Method I and II	Method I and III	Method II and III
Selectively extracted	28	26	2	0
		Three methods		
Commonly	58	58		

The highest number of compounds (122) were identified by ASE Method I (Figure 3). ASE Method I also showed the highest number of compounds (36) that were extracted only by this method (Table 3.)

Figure 4. Identification of bDtBPP from the plastic film with Full MS and MS/MS spectra

RESULTS

The selection of the extraction solvent is crucial to optimize factors governing a successful extraction, such as solubility and mass transfer.⁶ Solvents recommended for Soxhlet extractions are often also used for ASE.⁶ However, as higher temperatures and pressure are used in ASE, care must be taken to avoid polymer dissolution. ⁵The ideal situation is one where the extraction is performed at a temperature that causes the maximum swelling without dissolving the polymer.¹⁵ The solubility of polymers can be broadly predicted using solubility parameters, i.e., Hildebrandt parameter,⁶ (Table 3) wherein the closer the solubility parameters between the polymer and solvent, the more polymer will dissolve in a solvent at lower temperatures than another solvent with a different solubility parameter. More than 100 additives and degradation products were confidently identified by HRAM MS. Correlations between the type and levels of identified additives and the type of polymer system were established. In addition, degradation behaviour and pathways for some additives can be addressed.

CONCLUSIONS

This application note evaluated the capability and performance of an automated Dionex ASE 350 system to extract additives in the plastic film from single-used bags. Temperature and swelling agent proportion as selected variables were assessed for ASE extraction. More than 100 additives and degradation products were confidently identified by liquid chromatography and Orbitrap-based high-resolution accurate mass (HRAM) mass analysis. This analytical method, composed of an efficient and versatile extraction method, along with the excellent performance of Orbitrap HRMS, has all the necessary features to be used for raw material evaluation of bags during manufacturing process development, and it should be readily extended to other single-use components.

REFERENCES

1Gao, Y.; Allison, N. Extractables and leachables issues with the application of single use technology in the biopharmaceutical industry, J. Chem. Technol. Biotechnol. 2016, 91, 289–295. 2. Shukla, A.A.; Gottschalk, U. Single-use disposable technologies for biopharmaceutical manufacturing, Trends Biotechnol. 2013, 31, 147-154. 3. Allison, N.; Richards, J. Current status and future trends for disposable technology in the biopharmaceutical industry, J. Chem. Technol. Biotechnol. 2014, 89, 1283-1287. 4. Jenke, D.; Castner, J.; Egert, T.; Feinberg, T.; Hendricker, A.; Houston, C.; Hunt, D.G.; Lynch, M.; Shaw, A.; Nicholas, K.; Norwood, D.L.; Paskiet, D.; Ruberto, M.; Smith, E.J.; Holcomb, F. Extractables characterization for five materials of construction representative of packaging systems used for parenteral and ophthalmic drug products, PDA J. Pharm. Sci. Technol. 2013, 67(5), 448-511

5. Waldebäck, W.; Jansson, C.; Señoráns, J.F.; Markides, K.E. Accelerated solvent extraction of the antioxidant Irganox 1076 in linear low-density polyethylene (LLDPE) granules before and after gamma-irradiation, Analyst 1998, 123, 1205-1207. 6. Vandenburg, H.J.; Clifford, A.A.; Bartle, K.D.; Carlson, R.E.; Carroll, J.; Newton, I.D. A simple solvent selection method for accelerated solvent extraction of additives from polymers, Analyst 1999, 124(11), 1707–1710.

7. Vandenburg, H.J.; Clifford, A.A.; Bartle, K.D.; Zhu, S.A.; Carroll, J.; Newton, I.D.; Garden, L.M. Factors affecting high-pressure solvent extraction (accelerated solvent extraction) of additives from polymers, Anal. Chem. 1998, 70(9), 1943–1948.

ACKNOWLEDGEMENTS

Results based on work presented in application note AN000046 by Beibei Huang, Jeffrey Rohrer, Jonathan Bone and The National Institute for Bioprocessing Research and Training

TRADEMARKS/LICENSING

2022 Thermo Fisher Scientific Inc. Peak Scientific and Genius are trademarks of Peak Scientific Instruments. Irgafos 168 is a registered trademark of BASF Corporation. Citroflex is a registered trademark of Vertellus Holdings LLC. Uvitex is a registered trademark of Huntsman International LLC Corp. All other trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is presented as an example of the capabilities of Thermo Fisher Scientific Inc. products. It is not intended to encourage use of these products in any manners that might infringe the intellectual property rights of others. Specifications, terms and pricing are subject to change. Not all products are available in all countries. Please consult your local sales representative for details. AN000046-na-en0721S

Thermo Fisher SCIENTIFIC

thermo scientific