New strategy for bacterial species identification in Urinary Tract Infection using Artificial Intelligence on Ultrafast LC-MSMS-DIA runs

Florence Roux-Dalvai¹; Mickaël Leclercq¹; Elsa Claude¹; Marion Narbeburu¹; Tabiwang N. Arrey²; Nicolai Bache³; Clarisse Gotti¹; Claire Dauly²; Dorte B. Bekker-Jensen³; David Bouyssié⁴; Maurice Boissinot⁵; Michel G. Bergeron⁵; Arnaud Droit¹

¹Proteomics platform and Computational Biology Laboratory - CHU Québec Université Laval Research Center, Québec, QC; ²Thermo Fisher Scientific, Bremen, Germany; ³Evosep Biosystems, Odense, Denmark; ⁴Institut de Pharmacologie et de Biologie Structurale, Université de Toulouse, CNRS, Toulouse, France; ⁵Infectiology Research Center - CHU Québec Université Laval Research Center, Québec, QC

Introduction Analytical workflow The standard pipelines to identify bacterial species in Urinary Tract Infections (UTI) require a Prediction long step of bacterial culture, during this time patients receive broad- spectrum antiobiotics known to increase bacterial resistance in the whole population. Our projet aims to use LC-MSMS analysis to avoid the bacterial culture step. **Bacterial ID** Broad-spectrum antibiotics Culture **Biochemical Tests** ≈100h Multiple urine LC-MS-DIA maps binning BioDiscML Ultrafast LC-MSMS- DIA inoculation Culture MALDI-TOF 24-48h 80 classifiers (m/z and RT)Evosep One + Orbitrap Exploris 480 replicates No peptide/ protein IDs > 5000 models 2-4h Trypsin + LC-MSMS Short run length assessment **Binning size** Conclusion Test of 3 run lengths on 4 species found in 70% of UTI (E.coli, Variou E.faecalis, K.pneumoniae, S.agalactiae), 285 samples. and RT

Run length	21 min	11.5 min	5.6 min		
Throughput (samples/day)	60	100	200		
Blank discrimination	lbk (5) MCC= 0.935	IB1 (2) MCC = 0.997	Pegasos (5) MCC = 0.889		
Species discrimination	2 models (17) MCC = 0.975	NaiveBayes (10) MCC = 0.955	Kstar (5) MCC = 0.967		
Final accuracy MCC*	0.955 +/- 0.026	0.976 +/- 0.016	0.928 +/- 0.082		
*MCC = Matthew Correlation Coefficien					

s binning sizes in m/z have been tested. on of RT dimension ves to final accuracy keeping a reasonable itational effort.	Binning	m/z 0.1 Da	m/z 0.01 Da	RT 20 sec	RT 10 sec
	Nb total features (computational effort)	950 000	9 500 000	1 800 000	2 700 000
	Final accuracy (MCC)	0.798 +/- 0.086	0.928 +/- 0.082	0.977 +/- 0.027	0.971 +/- 0.003

Confusion matrices

Additio

improv

while

compu

Very good performance of the 2 parts of the prediction model (blank discrimination followed by species discrimination). The good prediction are found on the diagnonal line.

Final MCC = 0.971 +/- 0.003

MALDI-TOF allows a high throughput of analyses but with a long turnaround time to get the bacterial ID. In our previously published work (2), we used machine learning on peptide IDs to reduces this time to 4h but for a maximum of 50 samples per day. Our new strategy performs extremely well on both sides to offer a fast bacterial identification compatible with the **high throughput of clinical laboratories**.

	MALDI-TOF	Peptide ID + ML	Raw data + ML
Total Time	24-48h	< 4h	<3h
Throughput	100s /day	< 50/day	200/day

References

20

15

10

- 5

- 0

(1) Leclercq et al., Front. Genet, 2019; (2)Roux-Dalvai et al., MCP, 2019

