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ABSTRACT

Purpose: Integration of the MSstatsTMT tools directly into Thermo Scientific™ Proteome
Discoverer™ 2.5 software using the Scripting Node.

Methods: An R script was created to send the PSM and study information to the MSstatsTMT R
library for pairwise ratio generation. The Scripting Node subsequently re-imports the results for
presentation and visualization in the Proteome Discoverer software.

Results: This script was evaluated with 3 datasets: the yeast triple knockout Thermo Scientific™
Pierce™ TMT11plex standard, two replicates of the same yeast triple knockout standard, and a
three replicates TMT11plex experiment showing the effect of SARS-CoV-2 infection of human cells.
We also demonstrate the integration of the MSstatsTMT results with the enrichment analysis
function, aiding the downstream bioinformatic analysis of each of these datasets.

INTRODUCTION

The MSstats software package has become a standard tool for DDA, SRM and DIA label-free
quantification and recently the MSstatsTMT! libraries have been released for multiplexing TMT
experiments. These R libraries support direct import of data from Proteome Discoverer, but they
require a manual step to export the list of peptide-spectral matches and a separate file that maps
qguan channels and the various study factors. Here we show how to use the Proteome Discoverer
2.5 Scripting Node to automatically call a script to send study factor annotations and peptide-
spectral match tables to the MSstatsTMT/R Bioconductor library. The Proteome Discoverer software
subsequently reimports the results for visualization and bioinformatic analysis. We will demonstrate
this workflow on multiple TMT datasets of increasing complexity.

MATERIALS AND METHODS

Creation of MSstatsTMT script

TMT datasets were analyzed by the Proteome Discoverer software using the standard analysis
template for TMT SPS MS3 data, adding a Scripting Node to the Post Processing section in the
Consensus workflow (see Figure 1).

Figure 1. Consensus workflow with Scripting Node that calls the script for MSstatsTMT analysis.

RESULTS

Example 1: Yeast triple knockout — single replicate

The yeast triple knockout standard is a TMT11plex dataset with 3 replicates each of the MET®6,
HIS4, and URA2 gene knockouts plus 2 replicates of the parental strain as the final two channels.
For each of the gene knockout samples, the protein expressed by that gene should have little to no
abundance in the results relative to the parental strains and other proteins in the amino acid
biosynthetic pathways will be upregulated to synthesize the amino acids by alternative pathways.
This specific dataset was acquired on a Fusion Lumos instrument using the SPS MS?3 approach. In
Proteome Discoverer, the default workflows for TMT SPS MS? were used to analyze the dataset and
a Scripting Node with the customized script was used to produce the MSstatsTMT information.

Figure 2 shows a plot of the log, fold change versus the —log10 (adjusted p-value) for the
MSstatsTMT results using the Proteome Discoverer scatter plot function. The highlighted point is for
the MET®6 protein, which is highly downregulated as expected for such a sample.

Figure 2. Scatter plot of log, fold change versus -log,, adjusted p-value. The highlighted
point corresponds to the METG6 protein, which is down-regulated for the MET6 knockout
sample. The table on the right is the pairwise ratio results returned from MSstatsTMT and
the protein in the table below is associated with the selected entry on the table.
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The Scripting Node calls custom R script, exporting the Proteins, PSM, and Sample Information
tables for input to the script. This Sample Information table is a new feature for Proteome Discoverer
2.5 that maps the quantification channels for the analyzed dataset to the study factors defined by the
user. The R script first loads the PSM and Sample Information tables and subsequently converts the
tables into the formats recognized by MSstatsTMT. Subsequently, the MSstatsTMT functions are
called in the following order: PDtoMSStatsTMT, proteinSummarization, and groupComparisonTMT.
The resulting test.pairwise table is exported for input back into PD. The script subsequently maps the
accession numbers between the test.pairwise table and the existing Proteins table. Finally, the script
instructs Proteome Discoverer where to find and import the test.pairwise and Proteins-test.pairwise
association tables to integrate with the rest of the search results.

Ready 991/1224 Proteins; 997 Protein Groups: 5673 Peptide Groups: 6139 PSMs: 16687 MS/MS Spectrum Info. 16759 Quan Spectra; 1/2 Input Files; 11 Study Information; 2 Specialized Traces: 2199/6165 Annotation Protein Groups: 344/412 Psthway Protein..

Proteome Discoverer 2.5 also includes a new “enrichment” analysis feature, which highlights gene
ontology terms, pathways or protein family terms that are overrepresented in a given set of selected
proteins. The enriched Reactome pathways for the 35 proteins with the MET6/parental fold change
>1.5 and adjusted p-value <0.01 are shown in Figure 3. These indicate that up-regulated proteins
participate in basic metabolism pathways as well as amino acid biosynthetic and degradation
pathways.

Figure 3. Enriched Reactome pathways for up-regulated proteins for the MET6/parental ratio.
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Example 2: Yeast triple knockout — 2 replicates

For this example, two technical replicate datasets of the triple knockout were run in the same
analysis. The increased number of replicates should lead to an increase in the number of
significantly changed proteins for each gene knockout species compared to the parental strain.
However, with multiple files, there are a subset of peptides with missing quantification values where
the peptide was identified in only one of the two datasets. For the MET6/parental ratio, the new —log
adjusted p-value is 14.7 versus 5.4 for the single dataset, showing the improvement in confidence in
differential expression. There were 36 proteins significantly up-regulated using the MET6/parental
ratio compared to 35 for the single dataset. In total, there were 82 proteins up-regulated across all
ratios versus 74 for the single dataset. This shows the additional statistical power of combining
multiple runs even with the potential for missing values.

Example 3: SARS-CoV-2 host cell proteomics

Bojkova et al' recently released a preprint that used TMT quantification to study the effect of the
SARS-CoV-2 virus on human host cell proteins over a 24 hour period. The raw data for this study
was published in the PRIDE archive with accession PXD017710. These data were analyzed in
Proteome Discoverer 2.5 using a similar data analysis strategy as described in the preprint. These
data included three biological replicates and uses a common bridge channel to scale abundances
across samples. For this poster, only the TMT quantification of the pulsed heavy-labeled peptides
were quantified and the ratios for the viral-infected versus control samples were compared.

To determine which proteins and biological processes that are down-regulated with viral infection,
the MSstatsTMT table was filtered to show only the Control 24 hr timepoint versus the 24 hr virus
infection with a log2 fold change of 0.5 or higher and an adjusted p-value less than 0.01. The
resulting 472 proteins were involved in a large number of biological processes and pathways,
including apoptosis, lipid metabolism, IGF transport, and MTORC1-mediated signaling. For the 107
proteins that were up-regulated with viral infection, the enrichment analysis returned
overrepresented terms such as viral-mRNA translation, protein targeting to membrane, translation
initiation, and interleukin-12 mediated signaling pathway. (Figure 4)

Figure 4. Enrichment analysis for proteins up-regulated after 24 hours of viral infection.
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This indicates that the MSstatsTMT algorithms are indeed detecting the effect of viral infection,
showing that further virus is being produced and apoptotic and anti-inflammatory responses are
being suppressed. In comparison, the built-in Proteome Discoverer statistics produced 30 proteins
that were up-regulated and 51 proteins that were down-regulated using the same filtering criteria.

CONCLUSIONS

= The MSstatsTMT algorithms were successfully integrated into the Proteome Discoverer software
using the Scripting Node

» MSstatsTMT can handle simple to complex datasets and adeptly handles datasets with missing
values

» MSstatsTMT results integrate well with other features in the platform, including the new
enrichment service to be released in the Proteome Discoverer 2.5 software.
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