A complete workflow for improved untargeted metabolome annotation and identification using ultra highresolution accurate mass and LC-MSⁿ Orbitrap-based mass spectrometry

David A. Peake, Reiko Kiyonami, Ioanna Ntai, Amanda Souza and Ralf Tautenhahn, Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA, USA, 95134

ABSTRACT

Purpose: Demonstrate confidence in metabolite annotation from ultra-high resolution LC-MS and data dependent MS² data using a combined *global semi-targeted* (GST) metabolomics workflow.

Methods: NIST SRM1950 human plasma was analyzed using data dependent LC-MS/MS analysis and the AcquireX data acquisition strategy. A list of highly-confident annotations was prepared and 58 reference compounds were targeted for confirmation of metabolite annotations.

Results: Comparing the results from standard mixtures, SRM1950 plasma and spiked plasma extracts provided unequivocal evidence that 56 out of the 58 compounds were identified.

INTRODUCTION

Annotation of hundreds of unknown metabolites from human plasma is one of the most difficult challenges faced by metabolomics scientists. Automated annotation must incorporate accurate mass, isotope pattern and isotopic fine structure to confirm accurate elemental formula for database searching. Unknown MS² and MS³ spectra should be searched for identity or similarity matches against a high-quality MSⁿ mass spectral library and the identification level reported for each metabolite (Table 1) based on the consensus of the available analytical measures¹. Unequivocal identification of annotated metabolites requires confirmation by spiking authentic standards into the plasma and matching the retention time and fragmentation patterns of the unknown MS/MS spectra.

Preliminary analysis of SRM1950 human plasma using the AcquireX acquisition strategy showed that more than 5000 compounds were detected in the positive ion reversed-phase analysis with 82% of MS² spectra being acquired on the preferred protonated ions. Using the elemental composition of molecular species determined from ultra-high resolution MS data 2699 ChemSpider database hits were found. MS² product ion spectra were searched against the mzCloud MSⁿ library (>17,000 compounds and 4.75 million spectra) providing and 349 identity matches to known metabolites. Similarity results (1272 molecules) were prioritized using the mzLogic algorithm (rank orders annotations by mapping potential structures to known fragment ions in mzCloud).

An automated GST workflow for combined untargeted and semi-targeted sample analysis and data processing pipeline (Figure 1) results in improved metabolome coverage and highly confident annotations as confirmed here using 58 metabolite standards spiked into SRM1950 plasma extracts.

MATERIALS AND METHODS

Sample Preparation

SRM1950 human plasma was purchased from NIST (<u>https://srm1950.nist.gov</u>). Human metabolite reference standards were purchased from MetaSci (https://www.metasci.ca). Lipid reference standards were obtained from Avanti Polar Lipids, Inc. (https://avantilipids.com), Naproxen from Sigma-Aldrich (https://www.sigmaaldrich.com) and unlabeled carnitine and acyl carnitines standards (NSK-B-US) were obtained from Cambridge Isotope Laboratories, Inc. (https://www.isotope.com).

Stock solutions (1.00 mg/mL) were prepared in water, methanol, 1:1 methanol-water or 1:1 methanolchloroform. Some lipid reference standards were supplied as 10mg/mL solutions in chloroform. Ten different mixtures containing 5-10 compounds each were prepared at 10µg/mL in 1:1 methanol-water or methanol. Mixtures (Mix01-Mix10) were diluted 1:10 in water to give 1.0 μg /mL per compound for LC-MS² analysis. Aliquots of SRM1950 human plasma (100µL) were precipitated (21,000g at 4°C for 20min) using a 3:1 (v/v) methanol to sample ratio, and 300µL of the supernatant was evaporated under vacuum at 7°C overnight. Each plasma extract was reconstituted in 90µL of 95% water and 5% methanol, vortexed and the extracts were combined and centrifuged. Aliquots of 90µL plasma extract were spiked with 10µL of standard mixtures (M01-M10). Four aliquots of unspiked SRM1950 plasma were prepared as QC samples (P1-P4).

LC-MS and data dependent MS² analysis

SRM1950 plasma extracts, standard mixtures and spiked plasma samples were injected (2 µL) and separated on a Thermo Scientific[™] Hypersil GOLD[™] C18 column (2.1x150mm, 1.9µm, 45°C) using the gradient shown in Table 2. LC-MS analyses were performed using a Thermo Scientific™ Vanquish[™] UHPLC system coupled with a Thermo Scientific[™] Orbitrap ID-X[™] Tribrid[™] mass spectrometer. Mass spectral data were acquired separately in positive and negative ion modes at 120,000 MS resolution (FWHM @*m*/z 200) using internal mass calibration and data dependent HCD MS² (30,000 res.) using stepped collision energy for metabolite characterization (Tables 2, 3). An accurate mass inclusion list was employed to ensure that targeted reference compounds (Table 4) were prioritized for MS² analysis; untargeted metabolites were acquired during the remaining time.

RESULTS

Data Analysis

Analysis of SRM1950 plasma spiked with metabolite standards was conducted to validate confidence in unknown annotations. Ultra-high resolution MS data were analyzed with Thermo Scientific™ Compound Discoverer[™] version 3.1 software by first annotating unknown metabolites based on a formula search of selected ChemSpider databases (BioCyc, DrugBank, HMDB, KEGG, LipidMaps, PubMed) and Metabolika pathways. From the same dataset a targeted mass list generated from the reference standards in Table 3 was used to perform targeted analysis (Figure 1) for high confidence annotations determined in a preliminary analysis of SRM1950 plasma. All 58 reference compounds were identified by a formula search, with an average mass measurement error of < 0.1 ppm, and all but one compound (an isomer of Levulinic acid) matched the retention time of the standards (Table 5).

A fragmentation search was conducted of unknown MS² spectra against the MSⁿ mzCloud library (https://mzCloud.org) and a targeted search using the mzVault library (constructed from MS² spectra obtained from the reference compounds). The combination of mzCloud and mzVault searches (MS² match reported in Table 5 is the highest match score from mzCloud or mzVault for plasma/spiked plasma) unequivocally identified 56 out of 58 compounds in the SRM1950 and spiked plasma extracts. Stearoyl ceramide was not identified due to the very low abundance of the M+H ion.

Figure 1. Data analysis workflow for untargeted and semi-targeted metabolite identification.

Table 1. Unknown Annotation Level Definitions

Level	Database m/z match	HR-MS Composition	Library MS ² match	Standard Rt match	Standard MS ² match
0	Structure confin	med by 2D-NMR, HRMS	and other spectro	oscopic methods	6
1	\checkmark			\checkmark	\checkmark
2		\checkmark	\checkmark		
3		\checkmark			
4	Feature; retenti	on time and m/z, with sev	veral possible eler	nental composit	ions

Table 2. UHPLC Gradient Method

Time min	Flow mL/min	%A = H ₂ O 0.1% formic	%B = MeOH 0.1% formic
-4.00	0.300	100	0
0.00	0.300	100	0
8.00	0.300	50	50
9.00	0.300	2	98
14.0	0.300	2	98
14.1	0.300	100	0
15.0	0.300	100	0

Table 3. Orbitrap I	D-X MS Conditions
Ion Source	Orbitrap MS
ESI pos. = 3500V	Method 1 – LC-MS
ESI neg. = 3000V	MS R = 120K
Sheath gas = 40	Max IT = 50msec
Aux gas = 8	AGC = 1E5
Sweep = 1	Method 2 – LC-MS ²
Vaporizer = 320°C	MS R = 60K, MS ² R = 30k
IT temp = 275°C	IW = 1.5 Da
RF lens = 35%	AGC = 5E4
Int. Cal. = Easy-IC	Max IT = 54msec
Method t = 15 min	CE = 20, 35, 50%

	Table 4. Reference standard	as for confirming	metabolite ann	otation		
#	Compound name	HMDB ID	Location Catalog #	Formula	µg/mL	Std Mix
1	Choline	HMDB0000097	MetaSci 3J3	C ₅ H ₁₃ N O	1.00	M10
2	Serine	HMDB0000187	MetaSci 3E5	$C_3 H_7 N O_3$	1.00	M09
3	Creatinine	HMDB0000562	MetaSci 3C3	$C_4 H_7 N_3 O$	1.00	M08
4	Proline	HMDB0000162	MetaSci 3F6	$C_5 H_9 N O_2$	1.00	M09
5	Levulinic acid	HMDB0000720	MetaSci 3H2	$C_5 H_8 O_3$	1.00	M06
6	Betaine	HMDB0000043	MetaSci 3A1	$C_5 H_{11} N O_2$	1.00	M07
7	Butyric acid, 2-OH-3-Me	HMDB0000407	MetaSci 4G3	$C_{5}H_{10}O_{3}$	1.00	M02,06
8	Pyroglutamic acid	HMDB0000267	MetaSci 5J10	$C_5 H_7 N O_3$	1.00	M03
9	Isocaproic acid, α-keto	HMDB0000695	MetaSci 10D7	$C_6 H_{10} O_3$	1.00	M06
10	Valeric acid, 3-methyl-2-oxo	HMDB0000491	MetaSci 5E5	$C_6 H_{10} O_3$	1.00	M03
11	Proline, 4-hydroxy	HMDB0000725	MetaSci 6G9	$C_5 H_9 N O_3$	1.00	M04
12	Salicylic acid	HMDB0015470	MetaSci 5I5	$C_7 H_6 O_3$	1.00	M03
13	Glutamine	HMDB0000641	MetaSci 3A2	$C_5 H_{10} N_2 O_3$	1.00	M08
14	Lysine	HMDB0000182	MetaSci 4D1	$C_{e}H_{14}N_{2}O_{2}$	1.00	M02
15	Glutamic acid	HMDB0000148	MetaSci 3B10	$C_{r}H_{0}NO_{4}$	1.00	M08
16	Methionine	HMDB0000696	MetaSci 6F9	$C_{\rm F}H_{\rm A}NO_{\rm A}S$	1.00	M04
17	Acetminophen	HMDB0001859	MetaSci 5l6	$C_0 H_0 N O_0$	1 00	M03
18	Gentisic acid	HMDB0000152	MetaSci 3G7	$C_{2}H_{2}O4$	1.00	M06
10	Histidine	HMDB0000102	MetaSci 3G3	$C_{\rm H} H_{\rm H} N_{\rm H} O$	1.00	MOQ
20	Carnitine			CHNO	24.50	M01.05
20 21	Dhenylalanine		MetaSci 2E6		1 00	M00
21			MotoSci 2D7		0.50	MOG
22				$O_5 \Pi_4 N_4 O_3$	0.50	
23			MetaSci 4C10	$O_6 \Pi_{14} N_4 O_2$	1.00	
24				$O_{10} H_9 N O_2$	1.00	80101
25	Hippuric acid	HMDB0000714	MetaSci 4A9	$C_9 H_9 N O_3$	1.00	M02,06
26	Paraxanthine	HMDB0001860	MetaSci 4B2	$C_7 H_8 N_4 O_2$	1.00	M02
27		HMDB0002825	MetaSci 7C9	$C_7 H_8 N_4 O_2$	0.50	M05
28	Theophylline	HMDB0001889	MetaSci 1B9	$C_7 H_8 N_4 O_2$	1.00	M07
29	Tyrosine	HMDB0000158	MetaSci 3A7	$C_9 H_{11} N O_3$	1.00	M08
30	Azelaic acid	HMDB0000784	MetaSci 3G10	$C_9H_{16}O_4$	1.00	M09
31	3-Indolepropionic acid	HMDB0002302	MetaSci 10A7	C ₁₁ H ₁₁ N O ₂	1.00	M07
32	Caffeine	HMDB0001847	MetaSci 4H9	$C_8 H_{10} N_4 O_2$	1.00	M03
33	Hippuric acid, 2-hydroxy	HMDB0000840	MetaSci 9F4	$C_9 H_9 N O_4$	1.00	M06
34	Carnitine, 2:0	HMDB0000201	CIL NSK-B-US	C ₉ H ₁₇ N O ₄	7.72	M01,05
35	Tryptophan	HMDB0000929	MetaSci 3H8	$C_{11} H_{12} N_2 O_2$	1.00	M04
36	Carnitine, 3:0	HMDB0062514	CIL NSK-B-US	$C_{10}H_{19}NO_4$	1.65	M01
37	Naproxen	HMDB0001923	Sigma	$C_{14} H_{14} O_3$	1.00	M05
38	Carnitine, 4:0	HMDB0002013	CIL NSK-B-US	C ₁₁ H ₂₁ N O ₄	1.76	M01
39	Carnitine, 5:0 (Isovaleryl)	HMDB0000688	CIL NSK-B-US	C ₁₂ H ₂₃ NO ₄	1.86	M01
40	Atenolol	HMDB0001924	MetaSci 7C4	$C_{14}H_{22}N_2O_3$	1.00	M05
41	Piperine	HMDB0029377	MetaSci 9G5	C ₁₇ H ₁₉ N O ₃	1.00	M07
42	Carnitine, 8:0	HMDB0000791	CIL NSK-B-US	$C_{15}H_{29}NO_4$	2.18	M01
43	Sphingosine, d18:1	HMDB0000252	Avanti 860490	C ₁₈ H ₃₇ NO ₂	1.00	M10
44	Cortisone	HMDB0002802	MetaSci 9E5	$C_{21}H_{28}O_5$	1.00	M05
45	Cortisol (Hydrocortisone)	HMDB0014879	MetaSci 6E6	$C_{21}H_{20}O_{5}$	1.00	M04
46	Carntine. 14:0	HMDB0005066	CIL NSK-B-US	$C_{21}H_{44}NO_{4}$	2.82	M01
47	Cholesterol	HMDB000067	Avanti 700100	$C_{27}H_{40}O$	1 00	M10
48	Carnitine 16.0	HMDB0000222	CIL NSK-B-US	$C_{20}H_{40}$	6.07	M01
49	Carnitine 18.1(97)	HMDB0005065	Avanti 870852	$C_{05}H_{45}NO$	10.00	M10
50	Glycoursodeoxycholic acid	HMDB0000708	MetaSci 9R1	$C_{25}H_4/HO_4$	1 00	M07
50	Glycochenodeoxycholic acid		MetaSci 6D2	C H NO	1.00	MO4
51	Glycocholic acid		MetaSci 2110	$C \mu NO$	1.00	MOG
52			Avanti 945975		10.00	MOG
03 E 4	Lyso PC, 1-10.1($\forall L$)		Avanti 955775		10.00	
54	Lysu FU, 1-18:U			$O_{26} \Pi_{54} N O_7 P$	10.00	
55			Avanti 860516	$O_{34} H_{67} N O_3$	1.00	
56	Ceramide, d18:1/18:0		Avanti 860518	0 ₃₆ H ₇₁ N O ₃	1.00	IVI10
57	Bilirubin	HMDB0000054	MetaSci 4A8	$C_{33} H_{36} N_4 O_6$	1.00	M10
58	Sphingomyelin, d18:1/16:0	HMDB0061712	Avanti 860584	$C_{30}H_{70}N_2O_6P$	1.00	M10

Table 5. Summ	ary of compou	nds identified i	n SRM1950	human plasma

	c. cumilary of compounds	laciitii				lonna			
ID level	Compound name	Rt, min	Rt Δ, min	Formula confirmed	lon	m/z, plasma	Δ, ppm	MS ² match	ID conf
1	Choline	1 13	0.01		Pos	104 1069	-0.9	90.9	
1	Serine	1 09	0.02	$C_{\alpha}H_{-}NO_{\alpha}$	Pos	106 0499	0.3	84.3	
1	Creatinine	1 18	0.02	$C_1 H_1 N_2 O$	Pos	114 0661	-0.8	90.3	_ _
1	Proline	1 27	0.00	$C_{-}H_{0}NO_{0}$	Pos	116 0705	-0.9	89.0	
3		3.76	0.30	C_2 H ₂ O_2	Nea	115 0401	0.3	84.6	×
1	Betaine	1 17	0.00	$C_{2}H_{4}NO_{2}$	Pos	118 0862	-0.5	90.4	
1	Butvric acid 2-OH 3-Me	5 13	0.03	$C_{2}H_{11}HC_{2}$	Nea	117 0557	-0.1	92.9	
1	Pyrodutamic acid	2 40	0.02	$C_{110} C_{3}$	Pos	130 0498	-0.5	89.2	
1	Valeric acid 3-Me-2-Oxo	5.93	-0.02	$C_{2}H_{12}O_{2}$	Neg	129 0557	-0.1	85.1	
1	a-Ketoisocaproic acid	6.35	-0.03	$C_6 H_{10} O_3$	Nea	129.0007	-0.1	88.0	
1	Proline 4-OH	1 12	0.01	$C_{110} C_{3}$	Pos	132 0655	-0.1	90.2	
1	Salicylic acid	9 15	0.00	$C_{-}H_{0}O_{0}$	Neg	137 0244	-0.1	95.9	
1	Glutamine	1 11	0.02	$C_{2}H_{16}O_{3}$	Pos	147 0763	-0.8	87.4	
1		0.97	-0.01	$C_{2}H_{10}N_{2}O_{3}$	Pos	147 1128	0.0	89.7	
1	Glutamic acid	1 13	0.01	$C_{-}H_{0}NO_{-}$	Nea	146 0459	0.1	88.5	
1	Methionine	1.90	0.01	$C_{2}H_{4}NO_{4}S$	Pos	150 0583	-0.2	91.8	
1	Acetaminophen	4 26	0.00	$C_{0}H_{1}NO_{2}$	Pos	152 0706	0.0	94.9	
1	Gentisic acid	5.33	-0.02	$C_{8}H_{9}HC_{2}$	Neg	153 0193	-0.2	90.0	
1	Histidine	1 09	0.09	$C_0 H_0 N_0 O_0$	Pos	156 0768	0.3	94 1	
1	Carnitine	1 15	0.01	$C_{6}H_{19}H_{3}C_{2}$	Pos	162 1123	-1 0	98.1	
1	Phenylalanine	3.91	-0.01	$C_{0}H_{12}NO_{0}$	Pos	166 0862	-0.3	95.4	
1		1.80	0.00	$C_{2}H_{11}HO_{2}$	Nea	167 0210	-0.4	91.4	
1	Arginine	1.00	0.07	$C_0 H_4 N_4 O_3$	Pos	175 1190	0.3	88.6	
1	Indole-3-acetic acid	8.53	0.00	C_{40} H ₀ N O ₂	Pos	176.0706	0.0	92.5	
1	Hippuric acid	5.85	-0.03	$C_0 H_0 N O_2$	Nea	178.0510	-0.1	89.2	
1	Paraxanthine	5.03	0.00	$C_7 H_0 N_4 O_2$	Pos	181.0720	0.0	93.4	\checkmark
1	Theobromine	4.35	0.01	$C_7 H_9 N_4 O_2$	Pos	181.0720	0.0	95.7	
1	Theophylline	5.21	0.01	$C_7 H_8 N_4 O_2$	Pos	181.0720	0.0	93.1	\checkmark
1	Tyrosine	2.54	-0.03	$C_9 H_{11} N O_3$	Pos	182.0811	-0.4	96.7	\checkmark
1	Azelaic acid	9.68	0.00	$C_9 H_{16} O_4$	Neg	187.0975	-0.4	96.1	
1	Indolepropionic acid	9.72	0.00	C ₁₁ H ₁₁ N O ₂	Pos	190.0863	0.2	96.2	\checkmark
1	Caffeine	6.13	0.02	$C_8 H_{10} N_4 O_2$	Pos	195.0879	1.3	97.3	\checkmark
1	Hippuric acid, 2-OH	6.98	-0.01	$C_9 H_9 N O_4$	Neg	194.0458	-0.4	93.4	\checkmark
1	Carnitine, 2:0	1.83	0.01	$C_9H_{17}NO_4$	Pos	204.1230	-0.2	93.2	\checkmark
1	Tryptophan	4.91	-0.01	$C_{11} H_{12} N_2 O_2$	Pos	205.0971	-0.3	97.8	\checkmark
1	Carnitine, 3:0	2.92	-0.02	$C_{10}H_{19}NO_4$	Pos	218.1388	0.5	92.0	\checkmark
1	Naproxen	10.45	-0.01	$C_{14} H_{14} O_3$	Pos	231.1016	0.1	86.7	\checkmark
1	Carnitine, 4:0	4.15	0.01	$C_{11} H_{21} N O_4$	Pos	232.1543	-0.1	92.0	\checkmark
1	Carnitine, 5:0	5.50	-0.01	C ₁₂ H ₂₃ N O ₄	Pos	246.1700	0.1	91.8	
1	Atenolol	4.17	0.00	$C_{14} H_{22} N_2 O_3$	Pos	267.1704	0.3	96.6	
1	Piperine	10.54	0.00	C ₁₇ H ₁₉ NO ₃	Pos	286.1438	0.1	96.6	
1	Carnitine, 8:0	9.97	0.00	C ₁₅ H ₂₉ N O ₄	Pos	288.2170	0.2	89.9	
1	Sphingosine, d18:1	10.45	-0.01	$C_{18}H_{37}NO_2$	Pos	300.2899	0.6	89.1	
1	Cortisone	10.13	0.00	$C_{21} H_{28} O_5$	Pos	361.2013	1.0	82.1	
1	Cortisol	10.21	-0.01	$C_{21} H_{30} O_5$	Pos	363.2168	0.5	92.3	
1	Carnitine, 14:0	10.44	-0.01	$C_{21}H_{41}NO_4$	Pos	3/2.3111	0.7	87.5	
1	Cholesterol	13.25	-0.01	$C_{27}H_{46}O$	Pos	369.3520	1.1	94.7	
1	Carnitine, 16:0	10.50	0.00	$C_{23}H_{45}NO_4$	Pos	400.3426	1.1	87.7	
1	Carnitine, 18:1	10.51	0.00	$C_{25}H_{47}NO_4$	Pos	426.3580	0.5	88.2	
1		10.46	0.01	$C_{26} \Pi_{43} N O_5$	Neg	448.3069	0.1	01.2	
1		10.04	-0.01	$C_{26} \Pi_{43} N U_5$	Neg	440.3008	-0.1	01.9	
1		11.04	-0.01		Rec	404.3019	0.2	04.9 00.0	
1	Lyso PC 1_1200	11.50	-0.01		Poo	524 2715	0.7	09.9	
1	Ceramide d18.1/16.0	13.46	-0.04	C H NO	Pos	538 5100	1.0	90.4 01 /	N N
ו 2	Ceramide d18.1/10.0	14 25	0.02	$C_{34} H_{67} NO_3$	Poe	566 5510	0.6	ND	
1	Bilirubin	11 81	0.00	C_{36} H ₂₀ N O_{3}	Pos	585 2710	0.4	91.6	
1	Sphingomvelin 16.0	13.77	-0.01	$C_{33} + C_{36} + C_{4} + C_{6}$	Pos	703.5750	0.2	94.0	
•	,		2.01	- 39 (9 2 ~ 6 !					

Uric acid identity confirmed in SRM1950 plasma extracts

Figure 2 shows the confirmation of uric acid identity matching the retention time of 1.80 min and m/z 167.0210 (-0.4 ppm) by ultra-high resolution (120K @ m/z 200) LC-MS, including a good fit to the fine isotopic structure that confirms the correct elemental composition. Figure 3 illustrates identity matching of the mzVault local and online mzCloud mass spectral libraries with very good match scores obtained from a single high quality high resolution MS² spectrum.

Figure 2. Confirmation of uric acid [M-H]⁻ ion, m/z 167.0209, retention time 1.80 min, with composition C₅H₄N₄O₃ matching isotopic fine structure, in SRM1950 human plasma extracts

Figure 3. Confirmation of uric acid identity with high quality MS² spectral matches with mzVault compound library (91.4) and mzCloud online library (89.6) in SRM1950 human plasma extracts

CONCLUSIONS

- A combined untargeted and semi-targeted workflow was demonstrated using the Orbitrap ID-X Tribrid mass spectrometer and automated processing of SRM1950 human plasma data.
- Compound Discoverer software supports annotation of untargeted metabolites and unequivocal identification and relative quantitation of targeted metabolites in a single workflow.
- Ultra-high resolution LC-MS (120K) and high resolution data dependent MS² (30K) spectra provide confirmation of targeted metabolite identity with retention time, elemental composition (including fine structure) and high quality matching of local mzVault and on-line mzCloud mass spectral libraries.
- Reference standards spiked into SRM1950 confirm the identities of 56 out of 58 high-quality annotations, adding confidence to the automated annotations provided using this approach.

REFERENCES

1. L W Sumner et al., "Proposed minimum reporting standards for chemical analysis", Metabolomics, 2007, 3, 231–241. DOI: 10.1007/s11306-007-0082-2.

For Research Use Only. Not for use in diagnostic procedures.

TRADEMARKS/LICENSING

© 2019 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others.

PO65496-EN0519S

)#811												
Uric a	RT=1.8	12 min, MS2 H4 N4 C3 M	FTMS (-), (HC	D, DDA, 167.021	08(20,35,5	50), -1)						
								167.0	2098			
						14						
		9	5.02020 AR 035									
	84.38 11.00927	5657	97.00420	106.00458 12	3.03116	133.32057 123.00748 142.021	174 1	67.65747	167.16285	186.9	6129	
	1.00944		97.00455	105.53411 12	3.03123	123.00742 142.025	169.	15832	173.61281		190.66230 193.96487	_
	95	2.11236 90	5.02034 95.035	99		142.07004 142.019	164.22849				194,01116	
					124.015	25						
								167.0	2106			
	80		100		120	140		160		180	200	_
						m/z						
						miz						
abol	ika Pa	athways				miz						
abol iboli	ika Pa	athways mzCloud	mzVault	Mass List	Ŧ M	s2 Group Areas		F] Grou	o CV [%]	+		
abol iboli	ika Pa	athways mzCloud	I mzVault	Mass List	• M	s2 Group Areas	1 9209 1 700	• Grou	p CV [%]	+		-
abol iboli	ika Pa ka	athways mzCloud 89.6	l mzVault	Mass List	• M:	52 Group Areas	E 3 1.82e8 1.79e	• Grou	p CV [%]	+		
abol iboli	ika Pa ka 6	athways mzCloud 89.6 86.2	l mzVault 91.4 89.2	Mass List	• M:	miz 52 Group Areas 1.41e8 1.54e0 6.92e6 7.97e0	3 1.82e8 1.79e 5 9.50e6 9.51e	 E Grou 8 9 9 9 	p CV [%] 1 3 5 5	* 1 3		
aboli iboli	ika Pa ka 6	athways mzCloud 89.6 86.2	I mzVault 91.4 89.2	Mass List	* M:	miz 52 Group Areas 1,41e8 1,54e0 6,92e6 7,97e0	3 1.82e8 1.79e 5 9.50e6 9.51e	+ Grou 8 9 6 9	p CV [%] 1 3 5 5	+		
aboli	ika Pa	athways mzCloud 89.6 86.2	I mzVault 91.4 89.2	Mass List	+ 1 M:	miz 52 Group Areas 1.41e8 1.54el 6.92e6 7.97et	3 1.82e8 1.79e 5 9.50e6 9.51e	 Grou 9 9 	p CV [%] 1 3 5 5	* 1 3		
abol iboli bolil	ika Pa ka 1 1 ka Pat	athways mzCloud 89.6 86.2 hways	I mzVault 91.4 89.2	Mass List	* M:	m2 52 Group Areas 141e0 1.54et 6.92e6 7.97et	E 3 1.82e8 1.79e 5 9.50e6 9.51e		p CV [%] 1 3 5 5	+ 1 3		
aboli boli Da]	ika Pa ka 1 1 κα Pat	nthways mzCloud 89.6 86.2 hways ss (ppm)	I mzVault 91.4 89.2 Match •	Mass List	* M:	m2 S2 Group Areas 14168 1.54e0 6.92e6 7.97e0 mzVault ID	E 3 1.82c8 1.79e 5 9.50e6 9.51e mzCloud ID	€ Grou 8 9 6 9 ChemS	p CV [%] 1 3 5 5 pider ID	+ 1 3 KEGG I	D	
abol iboli bolil Da]	ika Pa ka 1 1 ca Pat	nthways mzCloud 89.6 86.2 hways ss [ppm]	I mzVault 91.4 89.2 Match •	Mass List	* M!	m2 S2 Group Areas 14168 1.54ei 6.92e6 7.97ei mzVault ID	E 1.82e8 1.79e 5 9.50e6 9.51e mzCloud ID	€ Grou 8 9 6 9 ChemS	p CV [%] 1 3 5 5 pider ID	+ 1 3 KEGG I	D	
aboli boli Da]	ika Pa ka 1 1 ca Pat	athways mzCloud 89.6 86.2 hways ss (ppm)	I mzVault 91,4 89,2 Match •	Mass List	* M Scan #	m2 52 Group Areas 14160 154e0 6.92e6 7.97e0 mzVault ID	5 9.50e6 9.51e mzCloud ID	Grou 9 9 Grou ChemS	p CV [%] 1 3 5 5 pider ID	* 1 3 KEGG I	D	
aboli boli Da]	ika Pa 6 1 α Pat	athways mzCloud 89.6 86.2 hways ss [ppm] 0.45	I mzVault 91.4 Match • 91.4	Mass List	* 1 Mt	mz 52 Group Areas 1.41c8 1.54e 6.92c6 7.97c0 mzVault ID	E 1.82e8 1.79e 5.9.50e6 9.51e mzCloud ID	€ Grou 8 9 66 9 ChemS	p CV [%] 1 3 5 5 pider ID 142	1 3 KEGG I	D 200366	
aboli boli Da]	ika Pa 6 1 ΔMas	athways mzCloud 89.6 86.2 hways ss [ppm] 0.45	I mzVault 91,4 89.2 Match •	Mass List	* Mt	mz 52 Group Areas 6.92e6 7.97e6 mzVault ID 53	E 1.82e8 1.79e 9.50e6 9.51e mzCloud ID	Grou Grou	p CV [%] 1 3 5 5 pider ID 142	+ 1 3 KEGG	D <u>C00366</u>	
aboli iboli Da]	ika Pa 6 1 κα Pat	athways mzCloud 89.6 86.2 hways ss [ppm] 0.45	I mzVault 91.4 89.2 Match •	Mass List	* M: Scan #	mz 52 Group Areas 141e8: 154e 6.92e6 7.97ed mzVault ID 53	E 1.82e0 1.79e 5 9.50e6 951e mzCloud ID	Grou Grou ChemS	p CV [%] 1 3 5 5 pider ID 142	+ 1 3 KEGG	ID <u>C00366</u>	

