Thermo Fisher s c | e N T | F | C

Elemental and isotopic analysis: solutions for food authenticity, quality and safety

Dr Niel Williams

Sales representative Inorganic Mass Spectrometry September 8th 2022 RAFA 2022

The world leader in serving science

Agenda

Food analysis using triple quadrupole ICP-MS

2 Elemental analysis workflow

2 Isotope analysis workflow

Food analysis using triple quadrupole ICP-MS

niel.williams@thermofisher.com | 8-September-2022

Regulatory limits

- Regulations for nutritional and toxic elements in baby foods vary globally
- Toxic elements low limits subject to regular amendments!
- The Baby Food Safety Act introduced on 25th March 2021 in US reduces low limits for heavy metals in baby foods e.g., Hg → 2 µg·kg⁻¹

Toxic element	Lowest limit value globally (µg∙kg ^{⁻1})	Target conc. = 30% of the limit ∼MLOQ (µg⋅kg ⁻¹)
As	10	3.0
Cd	5	1.5
Hg	2	0.6
Pb	5	1.5
Sn	5000	1500

Toxic element	Lowest limit value globally (µg∙kg ^{⁻1})	Target conc. = 30% of the limit ∼MLOQ (µg∙kg⁻¹)	Commonly analyzed isotope	Potential interferences
As	10	3.0	⁷⁵ As+	¹⁵⁰ Nd++, ¹⁵⁰ Sm++
Cd	5	1.5	¹¹¹ Cd+	⁹⁵ Mo ¹⁶ O+
Hg	2	0.6	²⁰² Hg ⁺	186 <mark>W</mark> 16 O +
Pb	5	1.5	²⁰⁶⁻²⁰⁸ Pb ⁺	-
Sn	5000	1500	¹¹⁸ Sn+	-

As determination using SQ ICP-MS with KED mode

Thermo Fisher

What happens if we use a reactive gas?

As determination using SQ ICP-MS with O2 mode

What happens when we add an extra quadrupole?

Why do we need another quadrupole?

Consider analysis of As using TQ-ICP-MS with Collison/Reaction Cell – O₂ mode

Thermo Fisher

Interference free analysis with iCAP TQe ICP-MS system

Impact of interferences

Thermo Fisher

Doubly charged interferences cause enhancement effects

Which type of ICP-MS should be used?

10 niel.williams@thermofisher.com | 8-September-2022

Analysis of Baby food

Instrument configuration

- iCAP TQe ICP-MS
- ASX560 with ASXPRESS[®] PLUS (Teledyne Cetac Technologies)
- O₂ mode utilized for all analysis
- 1 minute 19 seconds analysis time

Sample Preparation

- 0.4 ± 0.05 g of dry sample or 2.0 g of wet sample + 5 ml HNO₃ + 1 ml HCl
- Closed vessel microwave digestion for 20 mins at 1200 W
- Dilution factors 125x for dry samples, 25x for wet samples

Thermo Scientific™ iCAP™ TQe Instrument Parameters

Thermo Fisher

- Footprint Smallest footprint of any ICP-MS
- **SEM** with improved lifetime
- 2 Quadrupole Dwell times 0.2 s for As, Hg, Se; 0.1 s for Cd, Fe, Pb, Sb, Sn; 0.05 s for others. 5 sweeps, 3 main runs
- **3 QCell** O_2 mode only
- Additional 'Q1' quadrupole for best interference removal
- 5 Interface settings RF power 1550 W Nebulizer : Borosilicate glass micromist, 400 μL·min⁻¹ at Ar flow rate 1.13 L·min⁻¹
 - **MFC** 100% O₂, 0.34 mL·min⁻¹ or 0.7 mL·min⁻¹ (analyte dependent)

Robust and innovative design for greater ease of use

Thermo Fisher SCIENTIFIC

Detection limits

- Instrument detection limit (IDL) based on standard deviation of blank concentrations
- Instrumental limit of quantification (ILOQ) in solution
 - 3 x IDL
- Method LOQ in baby food samples (MLOQ)
 - 125 x LOQ for powders
 - 25 x LOQ for purees

Toxic elements

Element	R ²	BEC (µg∙L⁻¹)	IDL (μg·L⁻¹)	ILOQ = 3 x IDL (μg·L ⁻¹)	MLOQ in dry samples (125 x LOQ) (µg∙kg⁻¹)	MLOQ in puree or wet samples (25 x LOQ) (µg·kg ⁻¹)
⁷⁵ As	0.9995	0.002	0.004	0.012	1.44	0.29
⁹ Be	0.9994	0.024	0.126	0.377	47.1	9.4
¹¹¹ Cd	> 0.9999	0.007	0.003	0.009	1.09	0.22
⁵⁹ Co	> 0.9999	0.001	0.001	0.004	0.49	0.10
⁵² Cr	0.9993	0.028	0.032	0.096	12.0	2.4
⁶³ Cu	0.9996	0.024	0.013	0.040	5.0	1.0
⁵⁶ Fe	0.9993	0.190	0.058	0.174	21.8	4.4
²⁰² Hg	> 0.9999	0.002	0.0003	0.001	0.11	0.02
⁶⁰ Ni	0.9993	0.060	0.033	0.099	12.4	2.5
²⁰⁸ Pb	> 0.9999	0.006	0.001	0.004	0.45	0.09
⁷⁸ Se	0.9999	0.005	0.010	0.030	3.7	0.7
¹¹⁸ Sn	0.9998	0.015	0.003	0.009	1.11	0.22
⁵¹ V	0.9995	0.059	0.021	0.064	8.0	1.6

Data for more elements can be found in AN 00209

Accuracy – analysis of certified reference materials

Thermo Fisher

Excellent agreement with certified values achieved

Robustness – QC standard recovery

• QC standard concentration – 0.1 µg·kg⁻¹ Hg, 1 µg·kg⁻¹ other traces, 20 mg·kg⁻¹ major elements

Thermo Fisher

Consistent QC recovery obtained throughout the entire measurement time

Analysis of arsenic

iCAP TQe – O_2 mass shift

Analysis of selenium

Food Nutrition & Safety Measurements Quality Assurance Program (FNSQAP) organized by National Institute of Standards and Technology (NIST)

	Dates	Samples	Nutritional Elements	Toxic Elements
FNSQAP		Infant Formula A	Na, K, Ca, Mg	-
Exercise 1 - Spring 2021	Samples received:	Infant Formula B		
	April 10, 2021	Baby Food A	-	As, Cd, Hg, Pb
		Baby Food B		
FNSQAP		Infant Formula B	Cr, Mo, Se	-
Exercise 2 - Spring 2022	Samples received:	Infant Formula C		
	May 10, 2022	Cocoa Powder	-	Cd, Pb
		Chocolate Drinking Mix		

• Three packets of each sample provided \rightarrow three results for each analyte required

Thermo Fisher S C I E N T I F I C

FNSQAP Ex-1, NIST

Results - Major elements in Infant formula samples

Excellent agreement with certified values achieved

FNSQAP Ex-1, NIST

Results - Mercury in provided samples, our data point in yellow

- Only 18 reported values for mercury out of 33 participants
- Many reported values extremely high false positives?
- Single mode iCAP Tqe ICP-MS analysis was able to provide accurate values close to LOQ level for mercury!

Even easier method development: single mode analysis

Thermo Fisher

SCIENT

Even easier method development: single mode analysis

Single mode analysis using just TQ-O₂ mode

- Very straightforward method development – one mode for all elements
- Improved interference removal for key analytes (e.g. V, As, Se, Cd, Hg) eliminates false positive results

Advantages:

 Reduced method runtime enables increased laboratory productivity

Reduced sample turnaround times

Improved return on investment

'Reaction Finder' - method development assistant

• Select Element/Isotope of interest

Reaction Finder proposes most appropriate gas/scan setting combination

Choose from list of Internal Standards

Acqu	uisition Param	neters, i	untime estimation	19 se	conds					
	Identifier		Q3 Analyte		SQ		CR Ga	Dwell time (s)	Channels	Spacing (u)
	7Li (S-SQ-H	(ED)			SQ		KED	0.1	1	0.1
	55Mn (S-SC	-KED			SQ		KED	0.1	1	0.1
	65Cu 65Cu	J.14N	65Cu.14N2.1H6		TQ		NH	0.1	1	0.1
	51V 51V.1	60 (S	51V.16O		TQ		0:	0.1	1	0.1
	48Ti 48Ti	14N4	48Ti 14N4 1H10		TQ		NHa	0.1	1	0.1
	Fit cells	to gri	d l		SQ		KED	0.1	1	0.1
	Fit cells	to co	ntent		SQ		KED	0.1	1	0.1
	Export	to Exce	1		SQ		KED	0.1	1	0.1
	+ Duplica	ate ana	lyte		SQ		KED	0.1	1	0.1
	Add int	ternal s	tandard analyte	•		59Co				
						115In	- 1			
						209Bi	2			

Redefining triple quadrupole ICP-MS with unique ease of use

Options for transient signals analysis in Qtegra ISDS with Thermo Scientific[™] iCAP[™] TQ ICP-MS

Thermo Fisher S C I E N T I F I C

Elemental analysis workflow

3

3

0

.

thermosciantific

FLASH IRMS

Thermo Fisher

Food cycle quality control

Why run elemental analysis in food?

• Monitoring protein content

- Determination of the nutritional quality of the products
- Transparent labelling nutritional, health, safety and economical point of view
- Price definition and quality comparison enablement based on % protein declarations

- Of essential importance for synthesis of amino acids and vitamins
- Cattle good regeneration of the udder during lactation
- Horse essential for healthy hoof growth
- Brewery preserving the shelf life of beer and securing the safety of the raw materials and final products

Nitrogen

Official methods

Interlaboratory data standardization

• Dumas (combustion) methods for N/Protein determination as the alternative to the Kjeldahl method

Application	Official Association	Official Method	1 48/2 YOU	ASBC	Official Method 1996. Nitrogen Determination
	AACC	Crude Protein in Cereal, 46-30, 1999	Common A	(American Society of Brewing Chemists)	in Barley
	(American Association of Gereal Chemists)		The second second	ASBC	Total Nitrogen in Wort and Beer by Combustion Method.
ACL	AOAC (Association of Official Analytical Chemists)	Official Method 990.03. Protein (crude)	Par -	(American Society of Brewing Chemists)	Report of Subcommittee, 1994
				DIN, EN, ISO 16634-1, 2008	Food Products – Determination of the Total Nitrogen Content by Combustion According to the Dumas Principle
NOK -	AOAC (Association of Official Analytical Chemists)	Official Method 992.15. Crude Protein in Meat and Meat Products including Pet Foods 39.1.16		(International Organization for Standardization)	and Calculation of the Grude Protein Content. Part 1: Oil Seeds and Animal Feeding Stuffs
CON SE	•	-	A	DIN, EN, ISO 16634 – 2	Food Products – Determination of the Total Nitrogen Content by Combustion According to the Dumas Principle
	AOAC (Association of Official Analytical Chemists)	Official Method 992.23. Crude Protein in Cereals, Grain and Oilseeds 32.2.02	<u></u>	(International Organization for Standardization)	and Calculation of the Crude Protein Content. Part 2: Cereals, Pulses and Milled Cereal Products
		Official Mathemat 007.00	200	IFFO (International Fishmeal and Fish Oil	Nitrogen Determination in Fish Meal by Combustion
	AOAC (Association of Official Analytical Chemists)	Nitrogen in Beer, Wort, and Brewing Grains Protein (Total) by Calculation (Combustion Method)		Organization Ltd.)	Method
		Official Method 072 43	-	ISO 14891 (International Organization for Standardization)	Nitrogen Determination in Dairy Products by Combustion
	AOAC (Association of Official Analytical Chemists)	Microchemical Determination of Carbon, Hydrogen and Nitrogen		FIL 185 (International Dairy Federation)	Method
	AOCS (American Oil Chemists Society)	Official Method Ba 4e-93 (revised 1995). Combustion Method for Determination of Crude Protein		Office International de la Vigne et du Vin	Resolution OENO 13/2002 Quantification of Total Nitrogen by Dumas Method (Must and Wines) Quantification de l'Azote Total Selon la Methode de Dumas (Mouts et Vins)

Elemental analysis workflow

Thermo Fisher S C I E N T I F I C

FlashSmart Elemental Analyzer

What is the Thermo Scientific[™] FlashSmart [™] EA?

 An elemental analyzer which operates with the dynamic flash combustion (modified Dumas method) with the Thermal Conductivity Detector (TCD).

What is FlashSmart EA measuring?

• Carbon, hydrogen, nitrogen, sulfur and oxygen

How is the sample introduced in the system?

- Thermo Scientific[™] MAS Plus Autosampler for solids, viscous and liquids (weighed in containers)
- Thermo Scientific[™] AI/AS 1310 Liquid Autosamplers

Data report

Thermo Scientific[™] Eager*Smart* [™] Data Handling Software

- Specific factors for the conversion of nitrogen content to protein content (FAO)
- Acquired data:
 - Nitrogen
 - N/Protein
 - Sulfur
- Personalized reports

All-in-one analyzer

FlashSmart EA applications

Thermo Fisher

Crops

- Cereals and beans are the main component of the human diet and of feeding stock for domestic animals
- In addition to its dietary importance, protein content has become a quality guideline for some cereal trade transactions

Sample	N%	Protein %	RSD%
Corn	1.14	7.10	0.74
Bran	2.27	14.19	0.81
Wheat	1.74	10.89	0.30
Rice	1.10	6.27	0.83
Soy	6.21	38.81	0.55
Lentils	3.84	23.99	0.55
Beans	3.54	22.15	0.69
Peas	4.46	27.89	040
Green beans	3.90	24.40	0.53

Dairy products

- Solid, liquid and viscous dairy products
- Nitrogen/Protein determination for food quality control and R&D purposes
- Protein content and labeling requirements enable consumers to compare price and quality

Sample	N%	Protein %	RSD%
Raw milk	0.476	3.04	0.61
Pasteurized milk	0.510	3.25	0.68
UHT milk	0.529	3.38	0.56
Milk powder	5.46	34.83	0.30
Emmental	3.38	21.07	0.88
Parmesan	5.21	33.25	0.80
Provolone	4.35	27.77	0.67
Spread cheese	3.36	20.99	0.99
Yoghurt	0.515	3.28	0.95

Meat products

Thermo Fisher

- Meat products require homogenization
- Nitrogen/Protein determination for food quality control

Sample	N%	Protein %	RSD%
Cured ham	4.51	28.19	0.35
Сорра	4.34	27.12	0.71
Beef sausage	2.99	18.69	1.54
Wurstel	2.42	15.15	0.83
Salame	3.18	19.87	0.49
Bacon	2.75	17.19	1.15
Mortadella Bologna	3.27	20.44	1.32

Thermo Fisher

.

MIII

FLASH IRMS

forme forme

-

Isotope fingerprints

Product origin of fruits and vegetables, animal meat $\delta^{34}S$

Watering of beverages δ¹⁸Ο

and product origin of coffee, wine, liquor, water, sugar, animal meat, flavors

Mislabeling of fruits and vegetables, animal meat

$\delta^{15}N$

Adulteration of honey, liquor, wine, olive oil, butter, flavors, animal meat δ¹³C

Watering of beverages and product origin of coffee, wine, liquor, water, sugar, animal meat, flavors **ThermoFisher**

 $\delta^2 H$

Official methods in food integrity applications

- CODEX ALIMENTARIUS INTERNATIONAL
 FOOD STANDARDS (FAO/WHO)
 - Recommended methods of analysis and sampling CXS 234-1999
- CEN Technical Committee 460 'Food Authenticity' Working Group 6 - IRMS

Product	Official method	Isotope fingerprint	Sample	What does it address?	Analytical solution
Wine					
	OIV-MA- AS2-12	ô ¹⁸ O	Water	Adulteration, Geographical origin, Year of vintage	Thermo Scientific [™] GasBench II System, Thermo Scientific [™] Dual Inlet
	OIV-MA- AS312-06	õ ^{ta} C	Ethanol, Wine must, Grape sugar	Adulteration, origin	Thermo Scientific™ EA IsoLink™ IRMS System, Thermo Scientific™ GC IsoLink II™ Interface for GC-IRMS
1913	OIV-AS312-07	δ ¹³ C	Glycerol in wines	Adulteration by addition of glycerol from C4 maize or Fossil sources	GC IsoLink II Interface for GC-IRMS, Thermo Scientific [™] LC IsoLink [™] Interface for IRM-LC/MS
	OIV-OENO 510-2013	ð ¹³ C	Acetic acid in wine, vinegar		GC IsoLink II Interface for GC-IRMS, EA IsoLink IRMS System
at the second	OIV-OENO 510-2013	ô ¹⁸ O	Water in wine, vinegar	Adulteration, Geographical Origin, Year of Vintage	Thermo Scientific [™] GasBench II System, Dual Inlet
Sparkling wine					
	OIV-MA- AS314-03	δ ^{t3} C	CO ₂ in sparkling wine	Origin and authenticity of sparkling wine	GasBench II System, EA IsoLink IRMS System, GC IsoLink, Dual Inlet
Spirits					
tista.	OIV-AS312-07	ô ^{t3} C	Glycerol in spirits	Adulteration by addition of glycerol from C4 maize or Fossil sources	GC IsoLink II Interface for GC-IRMS, LC IsoLink Interface for IRM-LC/MS
Fruit Juice		8			
	EU – CEN 1995	δ ^{t3} C	Sugars	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, GC IsoLink II Interface
	USA – AOAC 1981	δ ¹³ C	Sugars	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, GC IsoLink II Interface
1011	EU – CEN 1998	δ ¹³ C	Sugars and pulp	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, GC IsoLink II Interface
AL ESG	EU – CEN 1995	δ ² H and δ ¹⁸ O	Water	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, GC IsoLink II Interface
	AOAC method 2004.01	δ ¹³ C	Ethanol (From Fermentation)	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, GC IsoLink II Interface
Fruit Juice (Concent	rate)				
Î.	AOAC 1992	δ ¹⁸ Ο	Water	Adulteration	GasBench II System, LC IsoLink Interface for IRM-LC/MS, EA IsoLink IRMS System
Honey	AOAO method		0.4.1		
	991.41	ð ¹³ C	concentration >7%	Adulteration of honey	EA IsoLink IRMS System
	AOAC method 998.12	δ ¹³ C	C-4 plant sugars at concentration >7%	Adulteration of honey	EA IsoLink IRMS System
Cheese					
	EU Reg 548/2011	ô ^{t3} C	PDO	PDO Grana Padano	EA IsoLink IRMS System

Thermo Fi

Isotope analysis workflow

IRMS portfolio

Driven by Thermo Scientific[™] Qtegra[™] Intelligent Scientific Data Solution (ISDS) Software

Umain 1 Stock Internet Stock Internet Stock Internet Inte		
trument vedicok Ninogen		
Intellions Normagen		
Active		
Peak Center Index at Peak Center Index at Peak Center Index at Peak Center Index at Palker 1 - Pale Width 20 + 200 +		
Peak Center Interval 1 - Peak Center For Fird Sta Only		
Peak Center For First Gas Cwy		
Immine Number of Putes 1 Pute Width 201 300 s Division Current Value Internal 300 s		
Imailine		
Image: The state of Publics 1 - Public Votion 20 cl - - - <th -<="" td="" tr<=""><td></td></th>	<td></td>	
300 s Division Current Value * Internal 30 s		
EA Start Charge Tunelook		
40 s Ka Start		
Obvrge TareBook dl High TCD Gain		
150 s 🧃 Turnflook Carbon Douide *		
160.0 s Junp On Pask End * Detection Officet 10 s		
Referencing		
240 t 1 Number of Pulses 1 2 Pulse Width 200 A		
Diutos Current Value * Internal 30s		
2003		
2001		

Why Qtegra ISDS Software?

- Automate workflows
- Simplify your experience
- Improve efficiency

ThermoFisher SCIENTIFIC

Where does my beef come from?

Thermo Scientific™ EA IsoLink™ IRMS System

Heaton et al., 2008

- Carbon and Nitrogen isotope fingerprint
- Pasture varies between C3 and C4 plant groups, which result in difference in animal (i.e., dietary differences)
- UK cattle reared on C3 diet, whilst Brazilian cattle reared on C4 diet

Was my produce organically grown?

Thermo Scientific™ EA IsoLink™ IRMS System

- Nitrogen isotope fingerprint
- Differentiation of nitrogen isotopes in plants and soils due to ammonia volatilization, denitrification, nitrification, etc.
- Organic (+8‰ to +20‰) versus synthetic fertilization (+3‰ to +6‰)

What is in my ice cream?

Thermo Scientific™ GC IsoLink II™ IRMS System

Courtesy D. Psomiadis, Imprint Analytics

- Carbon and Hydrogen isotope fingerprint
- Investigation the origin of vanillin in ice cream, cakes, cookies
- Natural (vanilla pods) vs. synthetic (e.g. wood, petroleum) vs. biosynthetic (e.g. cloves, rice, corn)

Was my honey sweetened?

Thermo Scientific™ LC IsoLink™ IRMS System

- Carbon isotope fingerprint
- Honey adulteration by addition of exogenous sugars
- Official method AOAC 998.12 (detection limit 7% sugar from C4 plant source) by EA-IRMS
- Compound specific analysis of individual sugars by LC-IRMS

Was my wine watered down?

- Oxygen isotope fingerprint
- Geographical origin and adulteration OIV-MS-AS2-12
- Grapes have local-regional fingerprint associated with localregional rainfall
- If adulterated by water or juices, the oxygen isotope fingerprint changes

Summary and Conclusion

- **Triple Quad ICP-MS** Single method
 - 30 elements Toxic and nutritional
 - Excellent interference removal
- Elemental Analysis C,N,O,S and H
 - Nitrogen/Protein determination
 - All in one analysis of liquid and solid samples
- **Isotopic analysis** origin and authenticity
 - Bulk and compound specific information
 - Fully integrated peripherals

Come speak to us at booth #2

Solutions for all your analytical needs

Visit <u>www.thermofisher.com</u> for more information

Thank you

47 niel.williams@thermofisher.com | 8-September-2022

Copyright 2022