High-throughput analysis of oligonucleotides using a single quadrupole mass spectrometer for quality control

Dennis Köhler, Mauro De Pra Thermo Fisher Scientific, Germering, Germany

Abstract

Purpose: Show step-by-step the analysis, deconvolution, and reporting of oligonucleotide synthesis quality control with a single quadrupole mass detector.

synthesis quality control with a single quadrupole mass detector.

Methods: Synthesized single length oligomers were analyzed without post synthesis purification. Thermo Scientific™ DNAPac™ RP column 2.1x50mm, 4µm) was run on a Thermo Scientific™ Vanquish™ Flex Binary HPLC system with UV detection.

Results: A step-by-step workflow including the analysis, deconvolution, and reporting of oligonucleotide synthesis quality control with a single quadrupole mass detector.

Introduction

Laboratories producing large arrays of customized DNA need to support this heightened throughput via increased automation and accuracy using intact mass determination for quality control. With this workflow from robotic DNA synthesis all the way through a confident pass/fail outcome for the expected sequence, Thermo Fisher Scientific offers a complete package consisting of the Vanquish Flex UHPLC system using the DNAPac RP column for the separation. Determination of the intact oligonucleotide mass uses the Thermo Scientific™ EM Single Quadrupole Mass Spectrometer and is interpreted using the Thermo Scientific™ Chromeleon™ Chromatography Data System (CDS) with the inclusion of the Intact Protein Deconvolution (IPD) engine and oligonucleotide analysis capabilities. Minor method optimizations provide cost savings and the reduction of 1,1,1-3,3,3-hexa-fluoro-iso-propanol (HFIP) and sodium adduct abundancy.

Introduction

Sample Preparation

The samples were provided in a 96-well plate. They were collected directly from the DNA synthesizer and were injected neat.

Table 1. Oligomer sample array provided by GeneArt AG (part of Thermo Fisher Scientific), Regensburg, Germany. All oligomers are 10 mM in water and were not desalted.

Oligo number	Sequence	Length (nt)	Theoretical average mass (Da)
1	AAGCCAGAGC	10	3206.0
2	CAATCTAAAGTATAT	15	4559.0
3	TCTCCCGGACGGAAACCGCC	20	6047.9
4	AGGTAATTTCGCCTCATTGGGGGCC	25	7689.0
5	CCGGCCTATGGCCCACAATGTAAAGAATTA	30	9184.0
6	GCCCGTGGTAAAGCAGTTCACGTGTACATAGTTGT	35	10802.0
7	GCCCATAATTGAGCCCCGCTGCCGACGAGCGGCTTTGTGC	40	12249.9
8	CCCTGAATTAAGGGGGCAGCCCCTTAATGAATGCCCGGACTCGAA	45	13839.9
9	TAAACTGTTTATCGGGGCTCAAATCTTAGGCCTAGGCAGGATCCCGTAAG	50	15425.0
10	ATAATCGAGAATTGGTATCGATTCGGGGCCACCCACAAGTCCGGTACACCAACCG	55	16897.9
11	CACACCTCGAAGAGTATTCCGTCCCGGAGCTGGTTAGGTGACTAACACTGCAAATTCTCT	60	18394.9
12	GGGGCGCTCTATCTTCCATC	20	6059.9
13	CCCGAGCGGAGTTTTGCGATAGTACACCAACCGAGCATCTCGAATTAAAGGCCTG	55	16928.9

Instrumentation

Vanquish Flex Binary HPLC System with Thermo Scientific™ Vanquish™ Variable Wavelength Detector F and ISQ EM single quadrupole mass detector.

Table 2. Chromatographic conditions

Column	Thermo Scientific DNAPac RP 2.1 × 50 mm, 4 µm (P/N 088924)						
Flow rate:	0.70 mL/min						
Mobile phase:	A: HFIP (0.01, 0.1, 0.5, 1.0, 2.0%), 0.1% TEA, in water						
	B: HFIP (0.0	1, 0.1, 0.5	, 1.0, 2.0%), 0.1	% TEA, in MeOH			
	Time (min)	%A	%B				
	0.0	99	1				
	0.4	99	1				
	0.4	75	25				
Gradient:	1.0	75	25				
	1.0	0	100				
	1.6	0	100				
	1.6	99	1				
	4.0	99	1				
Caluman taman anatuma	70 °C, forced air mode						
Column temperature:	70 °C, active pre-heater						
Injection volume:	2 μL						
UV detector	λ=260 nm, 100 Hz						
parameters:	Λ-200 IIII, I	N-200 HHI, 100 HZ					

Table 3. MS Settings: Instrument and scan settings for the mass spectrometer used for the final sample analysis

HESI Source Settings						
Vaporizer temperature	350 ° C					
Ion transfer tube	350 ° C					
temperature						
Source voltage	-3000 V					
Sheath gas pressure	75 psig					
Aux gas pressure	7.5 psig					
Sweep gas pressure	0 psig					

Scan Settings						
Mass range	600-2000 m/z					
Dwell/Scan Time	0.5 s					
Polarity	Negative					
Spectrum Type	Profile					
Source CID voltage	0 V					

The vaporizer temperature, transfer tube temperature, sheath gas/auxiliary gas pressures, and spray voltage were optimized by maximizing the peak area associated with the most abundant charge state. The instrument source settings were optimized at the beginning of experiments using Custom Injection Variables in Chromeleon CDS software in Figure 1. This order of optimization is represented in Table 4. It is important to note that the auxiliary gas pressure was always 10% that of the sheath gas pressure. Subsequently, the HFIP concentration was modified to improve the quality of the spectra. Finally, the source settings were optimized again at the new HFIP concentration.

Table 4. Variable source parameters in MS setting tuning

Order	Source Parameter	Optimization Range	Increments
1	Vaporizer temperature	300 to 450 ° C	50 ° C
2	Transfer tube temperature	300 to 400 ° C	50 ° C
3	Sheath gas (auxiliary gas)	50 to 80 psig (5 to 8 psig; 10% of sheath gas)	5 psig (0.5 psig)
4	Spray voltage	-1,000 to -5,000 V	1,000 V

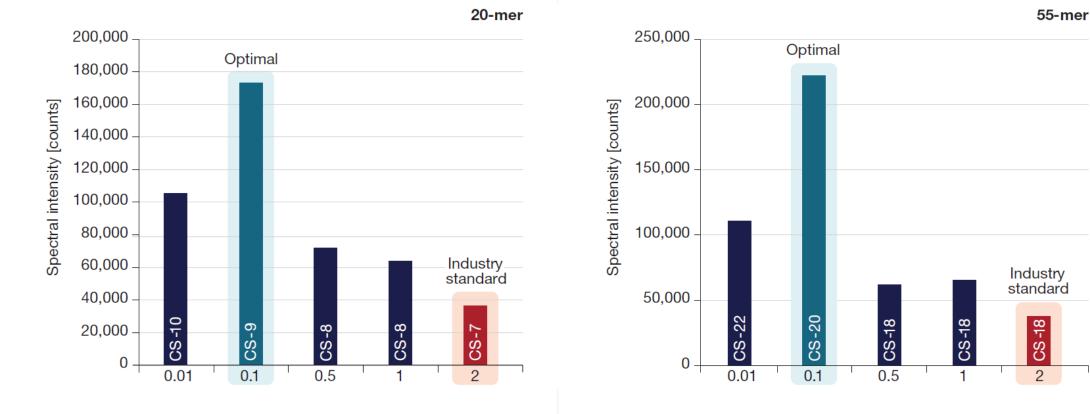
Figure 1. Inserted custom variables are as follows: VaporizerTemp (orange), TransferTubeTemp (blue), SheathGas (purple), SprayVoltage (yellow).

# U\	/_VIS_1 ▶ Name	Position	Volume [μl]	*VaporizerTemp [°C]	*TransferTubeTemp [°C]	*SheathGas [psig]	*SprayVoltage [V]	Instrument Method
1	Sample G10 - 260nm with ISQ - 2μL injection - 55mer	G:F2	2.00	300	300	75	-3000	HFIP Method v16 - ISQ Scouting
2	Sample G10 - 260nm with ISQ - 2μL injection - 55mer	G:F2	2.00	350	300	75	-3000	HFIP Method v16 - ISQ Scouting
3	Sample G10 - 260nm with ISQ - 2μL injection - 55mer	G:F2	2.00	400	300	75	-3000	HFIP Method v16 - ISQ Scouting
4	Sample G10 - 260nm with ISQ - 2μL injection - 55mer	G:F2	2.00	450	300	75	-3000	HFIP Method v16 - ISQ Scouting
5	Sample G10 - 260nm with ISQ - 2μL injection - 55mer	G:F2	2.00	300	350	75	-3000	HFIP Method v16 - ISQ Scouting
6	Sample G10 - 260nm with ISQ - 2μL injection - 55mer	G:F2	2.00	350	350	75	-3000	HFIP Method v16 - ISQ Scouting
7	Sample G10 - 260nm with ISQ - 2μL injection - 55mer	G:F2	2.00	400	350	75	-3000	HFIP Method v16 - ISQ Scouting
8	Sample G10 - 260nm with ISQ - 2μL injection - 55mer	G:F2	2.00	450	350	75	-3000	HFIP Method v16 - ISQ Scouting
9	Sample G10 - 260nm with ISQ - 2μL injection - 55mer	G:F2	2.00	300	400	75	-3000	HFIP Method v16 - ISQ Scouting
10	Sample G10 - 260nm with ISQ - 2μL injection - 55mer	G:F2	2.00	350	400	75	-3000	HFIP Method v16 - ISQ Scouting
11	Sample G10 - 260nm with ISQ - 2μL injection - 55mer	G:F2	2.00	400	400	75	-3000	HFIP Method v16 - ISQ Scouting
12	🧃 Sample G10 - 260nm with ISQ - 2μL injection - 55mer	G:F2	2.00	450	400	75	-3000	HFIP Method v16 - ISQ Scouting

Chromatography data system

Chromeleon 7.3 CDS software was used for data acquisition and analysis.

The ISQ EM mass spectrometer is fully integrated into Chromeleon software, which was used for system operation, subsequent data analysis, and deconvolution using the integrated Intact Protein Deconvolution (IPD) feature. This feature is also intended for oligonucleotides specifically with the negative charge and peak model setting (Table 5). The obtained MS chromatograms were analyzed with the IPD settings shown in Table 5.


Table 5. Intact protein deconvolution settings

Parameter	Value	Parameter	Value
Peak retention window	0.7-0.8 min	Low number adjacent	3
Algorithm	ReSpect™	charges	
Output mass range	2000-20000 Da	Intensity threshold	0.01
Deconvoluted spectra	Isotopic Profile	scale	
display mode		Min peak significance	1
Model mass range	2000-20000 Da	Negative charge	True
Deconvoluted Mass	100 ppm	Noise compensation	True
Tolerance		Noise rejection	95
Peak model	Nucleotide	Number of peak models	1
Resolution	Raw File Specific	Peak model width scale	1
Charge carrier	H+	Quality score threshold	0
Charge high	30	Relative abundance	0
Charge low	1	threshold	
High number adjacent	3	Target peak mass	20000
charges		Target peak shape left	2
		Target peak shape right	2

Results

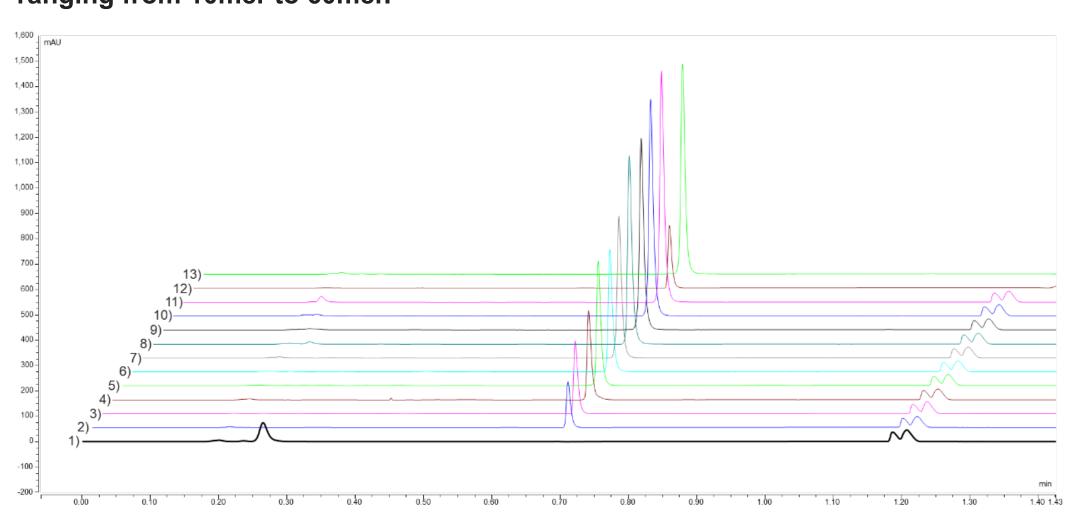

Reversed-phase ion pairing chromatography was performed on the oligonucleotides. The method scope was to clean-up the sample from salt and other reagents and elute the target oligonucleotide and related impurities as single peak. Initial experiments focused on testing HFIP concentrations of 0.01, 0.1, 0.5, 1.0, and 2%. As seen in Figure 2, the HFIP concentration was incrementally increased from 0.01% to 2% to maximize oligo peak area and minimize HFIP adduction. The industry standard is 2%. For the ISQ EM, it was found that the adduct abundancy versus the maximum spectral intensity was the greatest at 0.1% HFIP which yielded the lowest HFIP adduct relative abundancy and the largest maximum charge state's intensity. This 20x reduction of HFIP usage has a notable cost-saving impact as well.

Figure 2 Impact of HFIP concentration on adduct abundance and signal intensity.

Using the optimal HFIP concentration of 0.1% and given in the LC method conditions presented in Table 2, the following chromatographic overlays represented in Figure 3. The results represented by the traces show the elution of the oligomers without the separation of impurities such as the N-1, N-2, N-3, etc. but removing all extraneous synthesizing reagents present during the oligomer synthesis. One can observe that a failed synthesis occurred, like the 10mer seen in chromatogram 1 (black), where the expected oligomer peak is absent.

Figure 3. UV chromatograms for the oligonucleotide array provided in Table 1 ranging from 10mer to 60mer.

After the entire oligomer array was analyzed with the optimized HFIP concentration, LC method, and MS settings, data was analyzed using including the intact mass deconvolution, mass confirmation, and report. Using the deconvolution settings (Table 5) oligomer array spectra were analyzed for their respective intact masses (Table 1). The measured intact mass was then compared to the expected mass. This is performed with the Custom Injection Variables where the expected intact mass of the target oligomer and target mass accuracy is defined by the user within the injection sequence (Figure 5). The confirmation that the measured mass matched the expected mass within the specified target mass accuracy was automatically visualized as a pass/fail result in the sequence report (Figure 5).

Figure 4. Example of intact mass deconvolution using the 55-mer (sample 13).

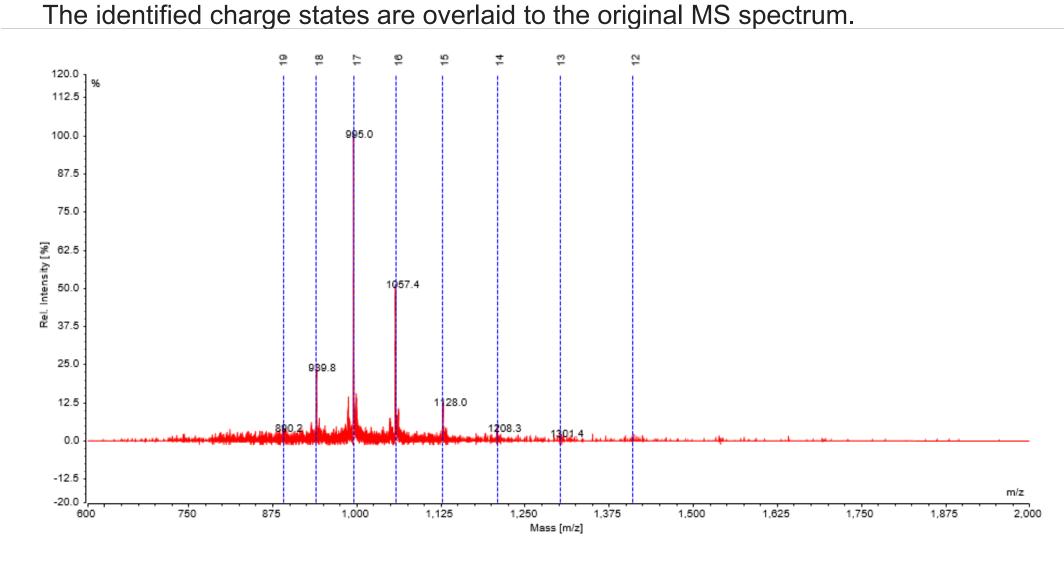
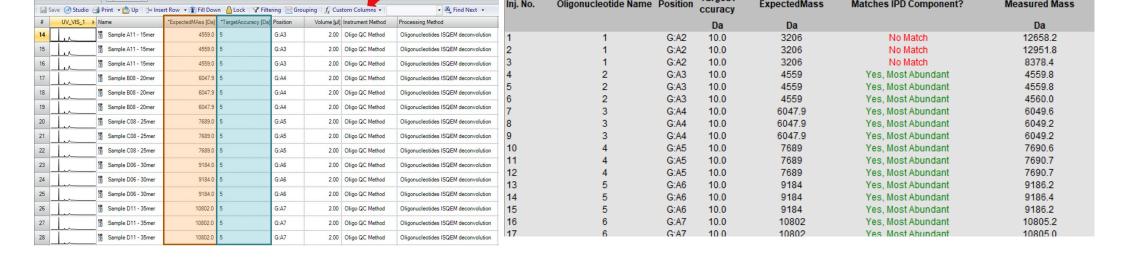



Figure 5. Expected mass and target mass accuracy with accompanying report. On the left using Custom Injection Variables in Chromeleon CDS allow the user to enter the expected target mass of the oligomer and define the target mass accuracy. This report template (right) confirms with an easy-to-read pass/fail result for the presence of the target mass. Red text "No Match": expected mass does not match any of the five most abundant deconvoluted masses. Green text "Yes, Most Abundant": expected mass matches the most abundant deconvoluted mass.

Conclusions

This work provides a complete workflow for the analysis of oligonucleotides via a high-throughput robust LC method, intact targeted mass confirmation, and a user-friendly report confirming that the expect oligonucleotide has been synthesized. The following features are included with this workflow:

- Optimal ISQ EM spectra quality is observed with 0.1% HFIP, much below the concentration typically found in the literature of 2% HFIP. Therefore, it reduces the consumption of HFIP by a factor of 20. In the case that 192 samples are run per day, a year's savings could amount to over \$3,500 in HFIP consumption.
- Reduction of HFIP adducts and no sodium adducts are observed.
- Samples are collected directly from the DNA synthesizer and injected neat. No sample preparation is needed.
- The ISQ EM parameters have been optimized for oligomers in the range 10-60 chain lengths.
- Suggested deconvolution parameters provide for a reliable and automated recognition of the oligomer mass. For oligomers with mass outside the described range and/or different spectra quality, different parameters for the deconvolution method may be required.

Quality control laboratories screening large arrays of synthesized oligonucleotides can now, with a high level of confidence, easily confirm the quality of their oligonucleotide syntheses.

Trademarks/licensing

© 2022 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. This information is not intended to encourage use of these products in any manner that might infringe the intellectual property rights of others.