

ASMS 2017 TP 280

Dheeraj Handique, Ankush Bhone, Durvesh Sawant, Prashant Hase, Sanket Chiplunkar, Nitish Suryawanshi, Ajit Datar, Jitendra Kelkar and Pratap Rasam Shimadzu Analytical (India) Pvt. Ltd., 1 A/B Rushabh Chambers, Makwana Road, Marol, Andheri (E), Mumbai-400059, Maharashtra, India.

PO-CON1789E

Introduction

Accurate screening, characterization and quantitative analysis of flavour & fragrance (F & F) components is essential for FMCG industries and subsequent reverse engineering, especially when unknown finished good to be analysed is in solid form. Conventional methods of GC analysis often lead to qualitative results and are time consuming and troublesome with regards to sample preparation techniques.

In this analysis, neat consumer products (Figure 1) were

analysed directly in HS sampler, applying different analytical techniques like static and dynamic headspace and their results were compared. In both the headspace technique it requires minimal sample preparation that significantly reduces overall analysis time without sacrifice in quality data.

F & F components were determined at trace levels by Shimadzu GCMS-QP2010 Ultra with HS-20 Trap system.

Figure 1. Consumer products

Method of Analysis

Extraction of F & F from consumer sample

Commercially available consumer products like soap, shower gel, tooth paste, body lotion and orange juice were purchased from local market. Static (Loop) and Dynamic (Trap) headspace techniques were employed for qualitative analysis.

For sample preparation (Figure 2), individual products were weighed in HS vial and crimped immediately using Aluminium cap with PTFE/ Silicon septum.

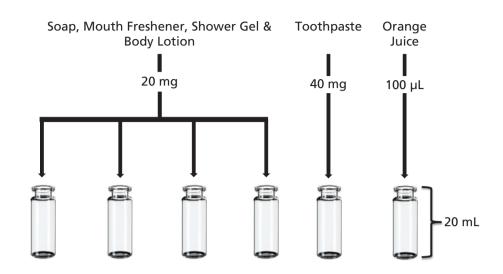


Figure 2. Representation of sample preparation for HS analysis

Loop technique employed single extraction of sample in static mode whereas dynamic technique used multiple extractions to concentrate sample in trap, which were further analysed by GC-MS.

Figure 3. GCMS-QP2010 Ultra coupled with HS-20 System by Shimadzu

HSGC-MS Analytical conditions

The instrument configuration used is shown in Figure 3. Samples were analyzed using HS-20 coupled with GCMS-QP2010 Ultra as per below conditions as shown in Table 1.

Table 1. Analytical conditions					
Headspace Parameters					
Mode	: Loop	Trap			
Oven Temp. (Juice sample)	: 130 °C (80 °C)	130	°C (80 °C)		
Sample Line Temp.	: 150 °C	150	°C		
Transfer Line Temp.	: 180 °C	180	°C		
Trap Cooling Temp.	: NA	-20 °	C		
Trap Desorb Temp.	: NA	300	°C		
Trap Equilib. Temp.	: NA	-10 °	C		
Multi Injection Count	: 1	5			
Pressurizing Gas Pressure	: 103 kPa	103	kPa		
Equilibrating Time	: 30.0 min	30.0	min		
Pressurizing Time	: 1.0 min	1.0 min			
Load Time	: 0.50 min	in 0.50 min			
Injection Time	: 1.0 min	10.0	min		
Needle Flush Time	: 45.0 min	45.0	min		
GC Cycle Time	: 55.0 min	55.0	min		
Chromatographic Parameters					
Column	: Rxi-5Sil MS (30 r	m L x ().25 mm ID x 0.25 μm)	1	
Injection Mode	: Split				
Split Ratio	: 100 (5.0 for Juic	e sam	ple)		
Carrier Gas	: Helium				
Flow Control Mode	: Linear Velocity				
Linear Velocity	: 36.3 cm/sec				
Pressure	: 53.6 kPa				
Column Flow	: 1.00 mL/min				
Total Run Time	: 45.0 min				
Column Oven Temp	Rate °C/mi	n	Temperature °C	Hold time (min)	
			50.0	0.0	
	5.0		250.0	5.0	
Mass Spectrometry Parar	Mass Spectrometry Parameters				
lon Source Temp	: 200 °C				
Interface Temp	: 250 °C				
Ionization Mode	: El				

Table 1. Analytical conditions

Mass spectrometry Parar	neters
Ion Source Temp	: 200 °C
Interface Temp	: 250 °C
Ionization Mode	: El
Event Time	: 0.30 sec
Mode	: Scan
Start m/z	: 40
End m/z	: 400

Results

Sample analysis using HS Loop and Trap technique

Same amount of samples of different products were analyzed on HSGC-MS loop and trap mode to compare the sensitivity. Difference in number of peaks and their comparative areas using two techniques are shown in Table 2 and 3 respectively. The chromatograms are shown in figure 4.

Summary of Comparison Between Loop and Trap for Different Products					
Sr. No.	Product	Vial Temp °C	Split Ratio	HS Mode	HS Mode
1	Orange Juice 80 5	Loop	3		
I		80	C	Trap	28
2	Toothpaste 130 100	Loop	66		
2		130	100	Trap	183
3	Mouth Freshner	130	100	Loop	56
				Trap	175
4	Shower Gel	130	100	Loop	86
				Trap	136
5	Body Lotion	130	100	Loop	33
				Trap	82
6	Soap	130	100	Loop	58
0				Trap	107

Table 2. Comparative result of Loop and Trap mode analysis

Table 3. Area comparison from Loop and Trap Mode for Major Components in Different Products

Sr. No.	Product	Components	Area Loop (x)	Area Trap	Increased Area in Trap
	Orange Juice	Limonene	1505291	51859804	34x
1		Pentane, 2,2,4-trimethyl-	27205	3670523	135x
		Terpineol <alpha-></alpha->	59883	2782693	46x
	Toothpaste	Menthol	26911667	469422497	17x
2		Camphor	32963052	437964646	13x
		Eugenol	21062093	391114898	19x
	Mouth Freshner	Menthol	24864908	488158291	20x
3		Propylene Glycol	2806236	223693653	80x
		Terpinyl acetate	4796880	221454317	46x
	Shower Gel	Benzeneethanol	5047951	77003506	15x
4		Linalool	5608303	68041272	12x
		Acetic acid, phenylmethyl ester	4480261	55205250	12x
	Body Lotion	Phenoxyethanol	12877588	176739640	14x
5		lsopropyl palmitate	8890582	133791601	15x
		Heptadecanol <n-></n->	2986315	67216756	23x
	Soap	Dihydromyrcenol	2977853	48902570	16x
6		Cyclohexanol <2-tert-butyl-, trans-> acetate	1968123	39508536	20x
		Linalyl acetate	762749	34916396	16x

Table 4. Reproducibility data for Limonene from orange juice in Trap mode

Sr. No.	Product	Component	% RSD (n=6)	
1	Orange Juice	Limonene	7.0	

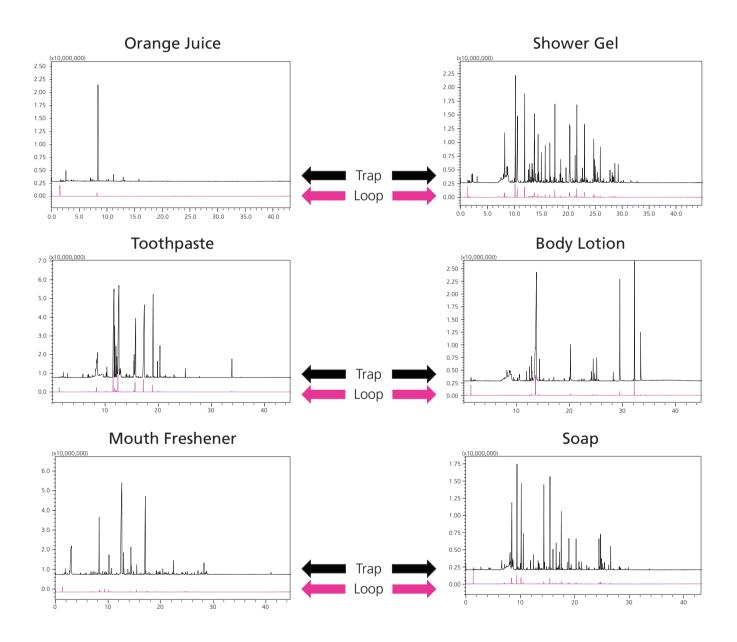


Figure 4. Overlay of Loop and Trap chromatograms for different products.

Conclusions

- HSGC-MS method was developed for qualitative of consumer products. Comparative data was generated using static and dynamic headspace techniques for consumer products.
- Both technique can be used as valuable tools for analyzing a variety of matrices. Statistical evaluation of the data showed that the dynamic HS technique method was more superior with respect to sensitivity and reliability as compared to static HS technique.
- The unique configuration of flow lines and the HS oven enable the analysis of high boiling point compounds while minimizing carryover. In addition, by using a trap function that incorporates an electronic cooling mechanism, it is possible to concentrate the headspace gas, which enables high-sensitivity analysis of low to high boiling point compounds.

Disclaimer: The products and applications in this presentation are intended for Research Use Only (RUO). Not for use in diagnostic procedures.

Shimadzu Corporation

www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. Company names, products/service names and logos used in this publication are trademarks and trade names of Shimadzu Corporation, its subsidiaries or its affiliates, whether or not they are used with trademark symbol "TM" or " \mathfrak{G}^{o} .

Third-party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "®".

Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.