
Goal
To demonstrate the application of untargeted metabolomics to determine 
the effects of inducer type and concentration on the metabolic fingerprint of 
engineered bacteria under different growth conditions.

Introduction
Meeting the demand for specialty chemical compounds for the 
pharmaceutical, agricultural, and manufacturing industries is one of the 
grand challenges of the modern chemical industry. This demand must be 
met under increasing regulatory scrutiny using environmentally friendly 
methodologies. Biotechnological approaches, powered by the techniques 
and concepts of synthetic biology, have the potential to deliver the necessary 
sustainable solutions. At its core, synthetic biology applies a design-build-
test framework1 to the redesigning of natural biological systems for beneficial 
purposes. By inserting and fine-tuning genetic information within microbial 
bio-factories (such as Escherichia coli2 and Streptomyces spp.3), it is possible 
to assemble complex enzymatic pathways for rapid and diverse chemical 
production. Inducible bacterial promotors, such as the isopropyl β-D-1-
thiogalactopyranoside (IPTG)-inducible lac promoters or tetracycline-inducible 
tet-promoters, are commonly used to strongly activate gene transcription, 
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switching on engineered biosynthetic pathways. Yet, it is 
often not fully understood how these inducible systems 
interact with the global bacterial metabolome, potentially 
with toxic side effects. 

The aim of this study was to investigate how the 
application of untargeted metabolomics can be used to 
understand the metabolic effects of inducer type and 
concentration on the metabolic fingerprint of engineered 
bacteria (E. coli DH5α harboring an IPTG-inducible, red 
fluorescent protein expression plasmid pBbA1a-RFP) 
under different growth conditions. This phenotypic 
information has the potential to inform upstream genetic 
strategies while at the same time better defining the most 
efficient use of this promotor for biochemical pathway 
expression.

To track the metabolic shifts caused by promotor 
induction in the bacteria, a large number of metabolites 
from the cellular exo-metabolome (spent media) were 
detected and identified using the Thermo Scientific™ 
Q Exactive™ GC Orbitrap™ GC-MS/MS system. This 
innovative setup combines the advantages of high 
sensitivity (down to ppt levels), large dynamic range (to 
cover a wide range of metabolite concentrations), and 
high resolution (60,000 FWHM @ m/z 200) with a  
< 2 ppm mass accuracy as commonly needed to detect 
and identify individual metabolites within complex 
mixtures.

The untargeted workflow used in this study involved 
data acquisition of randomized biological samples and 
quality controls. Injections of quality controls, consisting 
of pooled samples, were performed after every five 
samples to ensure the analytical process is performed 
appropriately and to assess the system stability. This 
was followed by data processing for peak deconvolution, 
library search for putative compound ID, and analysis of 
variance for the selection of compounds with significant 
effects between the sample groups. Compound 
identification was made using both NIST2017 nominal 
mass library and the Thermo Scientific™ Orbitrap™ 
GC-MS high-resolution, accurate-mass (HRAM) 
metabolomics library (the first commercially available 

high-resolution, accurate-mass metabolomics library for 
electron ionization GC-MS). The HRAM library contains 
more than 900 retention-indexed unique entries from 
more than 800 metabolites, covering both primary and 
secondary metabolites. Within this GC-MS analysis, the 
samples analyzed were spiked with a mixture of linear 
alkanes (C7–C30), which were used as internal retention 
markers.

Experimental
Growth conditions
Escherichia coli DH5α from glycerol stocks were 
inoculated onto Lysogeny Broth (LB) agar plates followed 
by inoculation into either Terrific Broth (TB) or LB with 
0.4% glucose and incubated overnight at 37 °C with 
shaking. Cultures were inoculated (1/100) into 1 mL 
of fresh broth in a 24-well plate and grown to mid-
logarithmic phase, whereupon they were induced using 
a Hamilton® Multistar robotic system with variable levels 
of IPTG (25, 50, and 100 µM final concentration) and 
incubated for a further 24 h at 37 °C with shaking.

Sample preparation and derivatization
Following incubation, samples were quenched with  
1 mL of cold methanol (−48 °C) to halt any enzymatic 
action within the bacteria and centrifuged for 15 min at 
12,225 RCF to remove cellular debris from the media. 
Then, 100 µL of supernatant was filtered using a  
0.45 µm syringe filter, combined with 100 µL of a  
100 µg/mL internal standard solution of D-glucose and 
l-alanine-d7, and dried down under vacuum. Lyophilized 
pellets were then subjected to a common two-step 
sample derivatization method carried out by the initial 
addition of 50 µL of a 20 mg/mL methoxyamine/pyridine 
solution to enable the methoximation of any potentially 
labile ketone groups. Incubation at 65 °C for 40 min 
was followed by silylation in which 50 µL of MSTFA + 
1% TMCS (N-methyl-N-(trimethylsilyl)trifluoroacetamide 
+ 1% trimethylchlorosilane) was added. Subsequent 
heating at 65 °C for 40 min afforded volatility to any labile 
hydroxyl and amine groups and the addition of the TMS 
(trimethylsilyl) moiety. The TMCS acted as a catalyst to 
ensure optimal TMS addition. 



3

Data processing workflow for unknown 
metabolite detection and identification
Full-scan, lock mass corrected data were imported into 
Thermo Scientific™ Compound Discoverer™ software 
and subjected to a qualitative untargeted workflow 
that involved retention time alignment, normalization, 
and statistical analysis (principal component analysis 
and differential analysis).4 Compound identification was 
achieved using Thermo Scientific™ TraceFinder™ software 
following spectral deconvolution and using the Thermo 
Scientific Orbitrap GC-MS HRAM metabolomics library. 
In addition to this, the NIST2017 nominal mass library 
was used to further extend the number of annotations 
assigned to putatively detected metabolites.

Table 1. GC and injector conditions.

TRACE 1310 GC System Parameters

Injection Volume (µL): 1.0

Liner: Single taper (P/N 453A1345)

Inlet (°C): 280

Inlet Module and Mode: SSL/SL, split 40:1

Carrier Gas (mL/min): He, 1.2

Oven Temperature Program 

Temperature 1 (°C): 70

Hold Time (min): 2

Temperature 2 (°C): 325

Rate (°C/min): 10

Hold Time (min): 6

Table 2. Mass spectrometer parameters.

Q Exactive GC Mass Spectrometer Parameters 

Transfer Line (°C): 280

Ionization Type: EI

Ion Source (°C): 250

Electron Energy (eV): 70

Acquisition Mode: Full-scan

Mass Range (Da): 50–550

Mass Resolution (FWHM): 60,000 at m/z 200

Lockmass (m/z): 207.03235

GC-MS analysis
In all experiments, a Q Exactive GC-MS/MS  
Orbitrap mass spectrometer was used. Sample  
injection into a hot split/splitless injector (280 °C) was 
performed using a Thermo Scientific™ TriPlus™ RSH™ 
autosampler, and chromatographic separation was 
obtained with a Thermo Scientific™ TRACE™ 1310 GC 
system and a Thermo Scientific™ TraceGOLD™  
TG-5SilMS 30 m × 0.25 mm I.D. × 0.25 µm film capillary 
column (P/N 26096-1425). A total GC run time of  
33 min per sample was used. Additional details of 
instrument parameters are shown in Table 1 and Table 2.
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Results and discussion
Relative metabolite levels were determined from E. coli 
culture media (LB and TB) following incubation in the 
presence and absence of IPTG at various concentration 
levels. In addition to these samples, pooled quality 
control (QC) samples were also analyzed. Raw data files 
were imported into Compound Discoverer software and 
grouped according to the treatment (IPTG) and media 
(LB and TB) (Figure 1). Data processing in Compound 
Discoverer software involved an alignment step used to 
compensate for small differences in the retention times of 
the components in the sequence (Figure 1).

Figure 1. Example of retention time alignment in Compound Discoverer software for several peaks detected in E. coli DH5α cultures 
induced with IPTG and grown in LB media. 

The component extraction (unknown detection using a  
±5 ppm extraction window and a signal intensity 
threshold of 500,000 peak area counts) step was 
followed by data normalization to correct for potential 
batch effects. To identify class differences, data was 
subjected to principal component analysis (PCA)  
(Figure 2). In this case, the first two principal components 
explain 54% of the variance within the dataset, with PC1 
(30%) dominated by differences between the two media 
types, and PC2 (24%) by differences between induced 
and uninduced cultures. By using such an approach, 
comparison of PCA loadings against blank media allows 
the identification of bacterial metabolites that differ 
between sample classes.
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Figure 2. Centered and log2-scaled Principal Component Analysis 
(PCA) scores plot (top) and loading plot (bottom). Data points within 
specific ellipses represent E. coli DH5α growing in either TB or LB media 
(Blue - TB media control, LB media control) and after the inclusion of 
various levels of the pBbA1a-RFP (IPTG) plasmid, under different media 
conditions (Orange - TB treated, LB treated). QCs (n=8, pooled samples) 
were also analyzed to test instrument and method performance.

LB treated TB treated

TB media control

LB media control

LB treated

As complete group separation was noted within the PCA, 
a wholly unsupervised approach was adopted. The next 
three data processing steps were designed to select 
significant features that contributed to group differences, 

in this case LB control vs. LB IPTG treated. An analysis 
of variance test (ANOVA) was performed alongside 
a subsequent multiple comparison Tukey Honest 
Significance Difference (T-HSD) test. This supplied an 
adjusted p-value of compound significance that was 
subsequently used as input, alongside associated 
compound fold change, into the volcano plot tool 
available in Compound Discoverer software. This tool 
plotted log2 fold change vs. -log10 p-value and identified 
compounds that were important in group discrimination 
and also had a suitable large fold change (Figure 3). 
Significant compounds (2045 ions corresponding to 212 
compounds selected based on p-values < 0.05 and log2 
fold change values > 1) were then selected and sent to 
TraceFinder software for attempted identification using 
spectral matches against libraries/databases. 

Figure 3. Discriminatory analysis (Volcano-plot) generated for 
LB IPTG 100 (green) and LB control (red) samples showing the 
compounds that significantly contributed to group difference 
to the left and right sides. The x-axis represents the log2 of the fold 
change between the two sample groups, and the y-axis represents 
the −log10 of the adjusted ANOVA p-value. The top-ranking ions in each 
group are highlighted in blue.
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Compound identification using Orbitrap-GC 
HRAM metabolomics library 
The overall goal of untargeted GC-MS metabolomics 
studies is to detect and annotate (identify) the metabolites 
responsible for group differences. This is usually 
accomplished by comparing the measured spectra 
against in-house standard databases or unit mass 
spectral libraries such as NIST or Wiley. Such annotations 
against an in-house library ascribe to the proposed 
minimum reporting standards of the community-led 
Metabolomic Standards Initiative at the highest level.4 
Statistically significant features were sent to TraceFinder 

software and identified using both NIST2017 and  
the Thermo Scientific Orbitrap GC-MS HRAM 
metabolomics library and retention time index derived 
from a C10–C19 alkane mix. This HRAM metabolomics 
library was created using pure metabolite standards 
analyzed on the Orbitrap-GC, and it contains ~850 
unique metabolite spectra (each with retention time 
index, CAS numbers, and PubChem identifiers) acquired 
in EI using 70 eV and 60,000 resolution. An example 
of spectral matching is shown in Figure 4 for glycine 
trimethylsilyl ester (glycine 3TMS).

Figure 4. Glycine 3TMS identification using the Thermo Scientific Orbitrap GC-MS HRAM metabolomics library. Forward and reverse search 
indices in addition to accurate mass information add to the confidence in compound identification.

Glycine 3TMS (SI 932, RSI 935)
Measured spectrum

HRAM metabolomics library spectrum
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Compound annotation was achieved using a search 
index dot product value of >750, a total score5 of >80, 
and a maximum retention time index difference (ΔRI) 
of 100 (measured versus expected). An example of the 
TraceFinder software deconvolution browser showing 
GABA 3TMS identified based on the criteria stated above 
is shown in Figure 5. 

Following this process, 39 significant metabolites were 
confidently identified from the ANOVA and volcano plot 
analysis, and their corresponding peak area fold-changes 
in each sample were calculated (Table 3). Fold-changes 
of each metabolite identified at each IPTG concentration 
were all within one-fold unit of change of each other. This 
indicates that minimal changes in the same metabolite 
were observed upon use of higher amounts of IPTG. 
Therefore, at a metabolic level at least, conservative 
levels of IPTG should be encouraged to reduce cost 

Figure 5. Example of metabolite identification in the TraceFinder software deconvolution browser showing a list of compounds (a), 
identified based on a total (average) score and retention index information (b), across the retention time aligned media samples (c), 
spectral match against the HRAM Orbitrap metabolomics library (c) as well as the deconvoluted spectrum (d) for GABA 3TMS are shown.

Measured spectrum

HRAM metabolomics 
library spectrum

a b

cd

and environmental impact. Optimization of IPTG levels 
in experimental design are a logical and important step, 
and this approach has already been proven successful 
in the production of terpenes2 and proteins.6,7 Yet, this is 
not a fully accepted practice as researchers regularly use 
an excess amount of IPTG to save time. But with IPTG 
currently costing upward of $400 per 100 g, developing a 
precise approach to inducer usage becomes even more 
important when methods are transferred to the industrial 
scale.
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Table 3. Table of fold change of detected metabolites that significantly contributed to group differences in the LB IPTG 25,  
LB IPTG 50, and LB IPTG 100 groups. Green to red color gradients indicate the fold change of associated metabolite upon comparison 
to blank media. All comparisons are made between LB media control and each of the IPTG-treated samples (e.g., putrescine is upregulated 
5-fold in LB IPTG 25 sample as compared to LB media control). The color and intensity of the boxes is used to represent changes of fold 
change. In the example below, red represents up-regulated metabolites, and green represents down-regulated metabolites.

Assuming that any fold-changes by a factor larger  
than 2 represent real differential abundance, rather than 
noise within the system, the results indicate that increased 
levels of IPTG promoted a depletion of sugars (trehalose, 
sorbose, glucose, and mannose) and decreased the 
levels of several amino acids (serine, arginine, proline, 
and tyrosine). These changes potentially reflect plasmid 
induction and activation by IPTG and, once switched 
on, production of the red fluorescent protein. Sugar 
metabolism is needed to provide the energy for protein 
biosynthesis, while the reduction in amino acids highlights 
the demand for raw material. Interestingly, GABA (γ-amino 

butyric acid) showed a marked four-fold reduction that 
could indicate a drive by the bacteria to use this as an 
alternative energy source. GABA can enter the TCA cycle 
by being converted to succinic acid via the GABA shunt 
pathway. Counter-intuitively, succinic acid itself also 
displayed a two-fold reduction upon plasmid induction, 
but fumaric acid, the metabolite following on from 
succinic acid within the TCA cycle, displayed a 5-fold 
increase. Reduction of succinic acid post-IPTG induction 
has also been observed within the W3110 E. coli strain, in 
which similar fundamental nutritional shifts were observed 
during protein production.6 
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Such bottlenecks within the energy cycle could be 
caused by a lack of capacity of the fumarate hydratase 
enzyme that converts fumaric acid to malic acid. 
Identifying such potential rate-limiting steps is vital input 
for subsequent design-build-test cycles to generate more 
efficient pathways. 3-hydroxybutyric acid also shows a 
high fold-change that points to issues with flow within the 
TCA cycle. In E. coli, this ketone body can be converted 
to acetoacetyl-CoA, which is eventually modified to 
acetyl-CoA, a vital metabolite in lipid metabolism energy 
production within glycolysis. Alongside this, increased 
levels of putrescine were observed in the IPTG-treated 
samples as compared to LB media control (Table 3). This 
observation of putrescine in spent media from an E. coli 
recombinant expression system mirrors results observed 
from the BL21(DE3) strain.7 Putrescine is a polyamine 
that is produced by the breakdown of amino acids from 
protein sources in living and dead cells. An up-regulation 
of the metabolite potentially indicates an increase in 
the need to derive amino acids for RFP production by 
degradation of other proteins. Compared to transporter 
activation, recycling of chemicals in this way is an energy-
efficient route to gain essential raw materials.

Conclusions
The data obtained in this study clearly show significant 
changes in metabolism arising from IPTG induction 
and subsequent protein production on the metabolic 
fingerprints of E. coli cells. However, it is important to 
note that due to the proof-of-principle nature of this 
research, it is difficult to determine if induction or protein 
production and subsequent extracellular transportation 
caused the associated metabolic changes observed. A 
larger secondary experiment is required to fully validate 
and confirm the biological findings. 

• The untargeted analysis leads to the identification of
39 significant metabolites that showed statistically
significant differences between the exo-metabolome of
E. coli grown in LB media and exposed to various levels
of IPTG and the corresponding control.

• Metabolites identification was simplified by using
a dedicated HRAM metabolomics library retention
time index information, significantly increasing the
confidence in compound identification, one of the most
critical steps in metabolomics.

• Compound Discoverer software and TraceFinder
software streamline data interrogation, proving
qualitative and quantitative information and increase the
confidence in the results.

Taken together, using the Q Exactive GC Orbitrap GC-
MS/MS system operated in full-scan mode at high 
resolving power allows confident metabolite detection 
and identification, and eases the ability to discriminate 
between various biological sample groups.
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