Nitrosamine Analysis in Drinking Water using GC/MS/MS for Performance Equivalent to EPA Method 521

Andy Eaton, Chuck Grady, Konjit Tadigo, Bruce Li, Bill Davis, Eurofins Eaton Analytical **Ralph Hindle, Vogon Laboratories** Diana Wong, Ron Honnold, Craig Marvin, Agilent Technologies Inc.

International Food & Environmental Analysis Summit Toledo, 03-04 April, 2019

Introduction

EPA Method 521 (2004)

"Determination of nitrosamines in drinking water by solid phase extraction and capillary column gas chromatography with large volume injection and chemical ionization tandem mass spectrometry"¹

Background

Ion Trap GC/MS is the approved instrumentation for Method 521 but it is being obsoleted

EPA might regulate nitrosamines due to the occurrence in drinking water and waste water (particularly NDMA)

EPA Office of Groundwater/Drinking Water (OGWDW) considers alternate detection techniques without changing the guidelines for sample preparation

Purpose of the Project

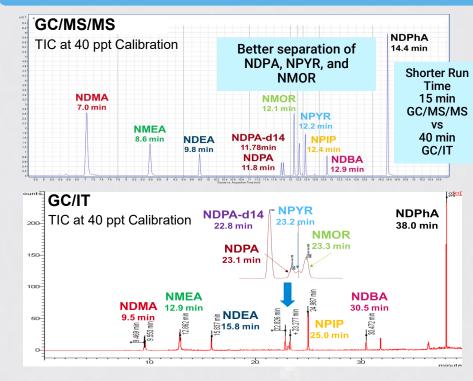
Directly compare Triple Quadrupole GC/MS (GC/MS/MS) and the currently used Ion Trap GC/MS (GC/IT) method using split samples set

Poster highlights:

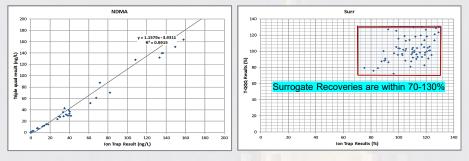
Phase I: Varian 4000 GC/IT vs Agilent 7010 GC/MS/MS

Phase II: Three Laboratory Validation Studies of GC/MS/MS method

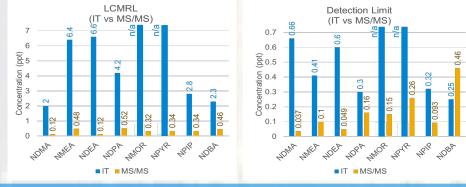
Phase III: Data Pack sent to the EPA for Technical Review (Feb 2018)


Final Product: A more sensitive method with equivalent performance

GC/MS/MS Parameters


GC/MS/MS provides **10-20x lower** injection volume

El mode provides easier operation and increase reliability


Phase I: GC/MS/MS vs GC/IT (Lab A)

Good Correlation between GC/MS/MS and GC/IT Field Sample of Real Extracted Water

GC/MS/MS achieves lower LCMRL and Detection level than GC/IT

Phase II: Interlaboratory Validation

Method Compliance! Both Systems Work!

7010 GC/MS/MS	7000 GC/MS/MS		
LAB A and LAB B	LAB C		

Complete Source

NDMA

(0.5 ppt)

NMOR

(0.5 ppt)

NDBA (0.5 ppt)

Phase II: Data Pack sent to EPA

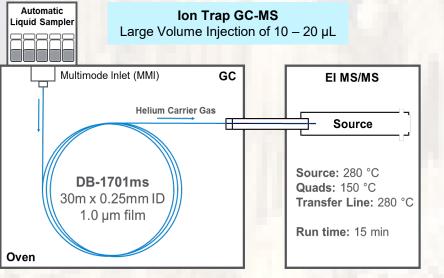
LCMRLs (3 lab)

Matrix Spike/Matrix Spike Duplicate Data

Holding Time Studies (samples and extracts)

Split sample results from multiple matrices comparing GC/IT and GC/MS/MS

EEA-Agilent Method 521.1


Dr. Andrew Eaton Eurofins Eaton Analytical, LLC 750 Moyal Oaks Drive Monrovia, CA 91016 March 13, 2018 Dr. Eaton The FPA Office of Ground Water and Drinking Water Technical Support Center (TSC) prepare this response to your request for approval of a modified version of EPA Method 521, uring the development of EPA Method 521 one of the major challenges was obtaining sufficient sensitivity for nitrosamine analysis. This was addressed using chemical ionization conjunction with ion trap MS/MS. Since the new method replaces both of these elements, method sensitivity was a primary concern. Lowest Concentration Minimum Reporting Limits (LCMRLs) were generated by three Laboratories during validation of the new method and in cases, they are lower than the LCMRL values determined using the EPA method. Additionall precision and accuracy for fortified drinking water samples were within the quality control li of the method. Our analysis of the method validation data confirms that EEA-Agilent Method 5211, Revision 10, February, 2018 yields performance equivalent to FPA Method 521.		UNITED STATES ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45265
Dr. Eaton The EPA Office of Ground Water and Drinking Water Technical Support Center (TSC) prepare this response to your request for approval of a modified version of EPA Method 521, During the development of EPA Method 521 one of the major challenges was obtaining sufficient sensitivity for nitrosamine analysis. This was addressed using chemical ionization i conjunction with ion trap MS/MS. Since the new method replaces both of these elements, method sensitivity was a primary concern. Lowest Concentration Minimum Reporting Limits (LCMRLs) were generated by three laboratories during validation of the new method and in cases, they are lower than the LCMMI values determined using the FPA method. Additionall precision and accuracy for fortlified drinking water samples were within the quality control li of the method. Our analysis of the method validation data confirms that EEA-Aglient Method values and the same terms of the method validation at a confirms that EEA-Aglient Method of the method. Our analysis of the method validation at a confirms that EEA-Aglient Method	Eurofins Eaton A 750 Royal Oaks	Analytical, LLC Drive
The EPA Office of Ground Water and Drinking Water Technical Support Center (TSC) prepare this response to your request for approval of a modified version of EPA Method 521, During the development of EPA Method 521 one of the major challenges was obtaining sufficient sensitivity for nitrosamine analysis. This was addressed using chemical ionization i conjunction with ion trap MS/MS. Since the new method replaces both of these elements, method sensitivity was a primary concern. Lowest Concentration Minimum Reporting Limits (LCMRLs) were generated by three laboratories during validation of the new method and in cases, they are lower than the LCMRL values determined using the FPA method. Additional precision and accuracy for fortlified drinking water samples were within the quality control li of the method. Our analysis of the method validation data confirms that EEA-Agilent Method	March 13, 2018	
this response to your request to approval of a modified version of EPA Method 521, During the development of EPA Method 521 one of the major challenges was obtaining sufficient sensitivity for nitrosamine analysis. This was addressed using chemical ionization i conjunction with ion trap MS/MS. Since the new method replaces both of these elements, method sensitivity was a primary concern. Lowest Concentration Minimum Reporting Limits (LCMRLs) were generated by three laboratories during validation of the new method and in cases, they are lower than the LCMRL values determined using the EPA method. Additionall precision and accuracy for fortlified drinking water samples were within the quality control li of the method. Our analysis of the method validation data confirms that EEA-Aglient Method	Dr. Eaton	
During the development of EPA Method 521 one of the major challenges was obtaining sufficient sensitivity for nitrosamine analysis. This was addressed using chemical ionization i conjunction with ion trap MAS/MS. Since the new method replaces both of these elements, method sensitivity was a primary concern. Lowest Concentration Minimum Reporting Limit: (LCMRLs) were generated by three laboratories during validation of the new method and in cases, they are lower than the LCMRL values determined using the EPA method. Additional precision and accuracy for fortified drinking water samples were within the quality control li of the method. Our analysis of the method validation data confirms that EEA-Agilent Method.	The EPA Offi	ce of Ground Water and Drinking Water Technical Support Center (TSC) prepare
sufficient sensitivity for nitrosamine analysis. This was addressed using chemical ionization conjunction with ion trap MS/MS. Since the new method replaces both of these elements, method sensitivity was a primary concern. Lowest Concentration Minimum Reporting Limit: (LCMRLs) were generated by three laboratories during validation of the new method and in cases, they are lower than the LCMRL values determined using the EPA method. Additionall precision and accuracy for fortified drinking water samples were within the quality control li of the method. Our analysis of the method validation data confirms that EEA-Agilent Method	this response to	your request for approval of a modified version of EPA Method 521,
conjunction with ion trap MS/MS. Since the new method replaces both of these elements, method sensitivity was a primary concern. Lowest Concentration Minimum Reporting Limit: (LCMRLs) were generated by three laboratories during validation of the new method and in cases, they are lower than the LCMRL values determined using the EPA method. Additionall precision and accuracy for fortified drinking water samples were within the quality control li of the method. Our analysis of the method validation data confirms that EEA-Agilent Method	During the deve	elopment of EPA Method 521 one of the major challenges was obtaining
method sensitivity was a primary concern. Lowest Concentration Minimum Reporting Limit (LCMRLs) were generated by three laboratories during validation of the new method and in cases, they are lower than the LCMRL values determined using the EPA method. Additionall precision and accuracy for fortified drinking water samples were within the quality control li of the method. Our analysis of the method validation data confirms that EEA-Agilent Method	sufficient sensit	tivity for nitrosamine analysis. This was addressed using chemical ionization i
(LCMRLs) were generated by three laboratories during validation of the new method and in cases, they are lower than the LCMRL values determined using the EPA method. Additionall precision and accuracy for fortified drinking water samples were within the quality control li of the method. Our analysis of the method validation data confirms that EEA-Agilent Method	conjunction wit	h ion trap MS/MS. Since the new method replaces both of these elements,
cases, they are lower than the LCMRL values determined using the EPA method. Additional precision and accuracy for fortified drinking water samples were within the quality control li of the method. Our analysis of the method validation data confirms that EEA-Agilent Method.	method sensiti	vity was a primary concern. Lowest Concentration Minimum Reporting Limit
precision and accuracy for fortified drinking water samples were within the quality control li of the method. Our analysis of the method validation data confirms that EEA-Agilent Metho	(LCMRLs) were	generated by three laboratories during validation of the new method and in
of the method. Our analysis of the method validation data confirms that EEA-Agilent Metho	cases, they are	lower than the LCMRL values determined using the EPA method. Additional
	precision and a	ccuracy for fortified drinking water samples were within the quality control li
521.1, Revision 1.0, February, 2018 yields performance equivalent to EPA Method 521.	of the method.	Our analysis of the method validation data confirms that EEA-Agilent Metho
	521.1, Revision	1.0, February, 2018 yields performance equivalent to EPA Method 521.
		Stand Jendelley
sincerely, Stac Wendbleld		Steven C. Wendelken PhD. U.S. EPA, OGWDW-TSC
Stave Windskilley Steven C. Wendelken PhD.		26 W. Martin Luther King D
Stree Wordblellev Steven C. Wendelken PhD. U.S. EPD, OWWW TSC 26 W. Martin Luther King T		Cincinnati, Ohio 45219 Phone: (513) 569-7491

Inlet Parameters

Splitless

1 µL injection

35 °C (0.1 min) → ramp to 280 °C at 100 °C/min → 280 °C (20 min) Purge Flow to Split Vent: 100 mL/min at 0.8 min Inlet liner: 4 mm double-tapered, ultra-inert

Oven Parameters MMI Inlet → MSD

Constant Flow at 1.2 mL/min

Temperature Program 33 °C (1 min)

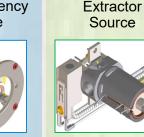
35 °C/min to 80 °C (2 min) 10 °C/min to 140 °C (0 min) 50 °C/min to 280 °C (2 min) 50 °C/min to 300 °C (3 min)

Run time: 40 min Ion Trap GC-MS Similar Oven Parameters

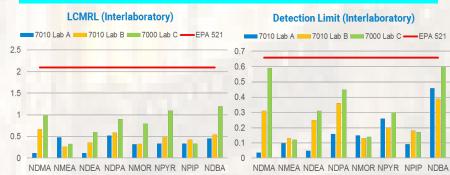
Ion Trap GC-MS

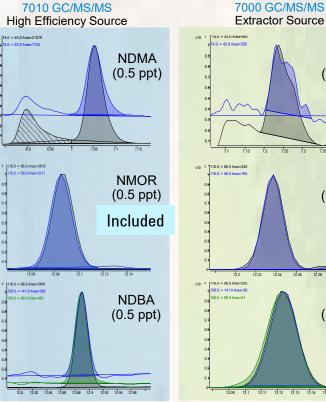
Chemical Ionization

VF-5ms


Experimental

All drinking water samples were extracted manually No changes made to Method 521 sample preparation


High Efficiency Source



Both, 7010 and 7000 GC/MS/MS can achieve Lower LCMRL and Detection limit than EPA 521

Note: LCMRL and DL for NMOR and NPYR is above the highest spiking level of 10 ppt. Four replicates at 0.1, 0.25, 0.50, 1.0, 2.0, 3.0, 4.0, 5.0, 8.0 and 10.0 ppt.

Baseline Separation in Water Sample Extracts

Method "officially" includes NMOR, which is not listed in EPA 521.

NDPhA was included in the studies but because it was not stable as long as the others it was excluded from the final method so as to not shorten the holding time.

Original datapack showed stability of the nitrosamines to 28 days but EPA would not allow a change in Holding Time.

Extracts were only tested out to 14 days.

Noteworthy Modifications!

Method 521 Section	EEA-Agilent Modification
1) Scope and Application	Added the analyte N-Nitrosomorpholine
6) Equipment and Supplies	Updated to reflect the use of GC/EI/MS/MS
8) Sample Collection, Preservation and Storage	Extract holding times are updated to 14 days
10) Calibration and Standardization	Updated to reflect the use of GC/EI/MS/MS
13) Method Performance	LCMRLs and performance data were updated
	using the new method conditions

References

¹EPA Method 521 Version 1.0, September 2004, EPA Document #: EPA/600/R-05/054

Letter of Equivalency for EEA-Agilent 521.1 for The Analysis of Nitrosamines in Drinking Water by GC/MS/MS. U.S. EPA Letter March 13, 2018.

Agilent Application Note: 5991-9224EN in collaboration with Eurofins Eaton Analytical (Monrovia, CA), Eurofins Eaton Analytical (South Bend, IN) and Vogon Laboratories