Wait – You Can Do That With a GC Triple Quad?

ASMS 2018 San Diego, CA

Thomas P. (Tom) Doherty, Ph.D. GC/TQ Product Manager June 5, 2018

Agilent Trusted Answers

Outline

- A little history
- Wait I can retire my mag sector?
- Wait that's not how you use a triple quad. Or is it?
- Wait I can replace my ion trap?
- Wait I can do volatiles?
- Wait it's not just for MS/MS?

Agilent's Revolutionary 7000A Triple Quadrupole GC/MS Introduced at ASMS 2008

- First modern GC/TQ purpose-built for GC/MS
- Based on the #1 and most trusted single quad, the Agilent 5975
- Was #1 in the market within 5 months, and has been ever since
- Perfectly timed to:
 - Ride the wave of the globalization of the food market and the increased concern over food safety
 - Lead the transition from multi-detector, multimethod GC-only pesticide residue methods to comprehensive GC/MS methods
 - Enable the use of QuEChERS and other simplified sample prep techniques

Food safety is the #1 market for GC/TQ, and the one that evolved at the same time the technology did – much like environmental and the single quad

What Does 10 Years of Evolution Look Like?

June 5, 2018

Anal Bioanal Chem https://doi.org/10.1007/s00216-017-0723-x

RESEARCH PAPER

Further improvements in pesticide residue analysis in food by applying gas chromatography triple quadrupole mass spectrometry (GC-QqQ-MS/MS) technologies

Elena Hakme¹ · Ana Lozano¹ · Samanta Uclés¹ · Amadeo R. Fernández-Alba¹

In this work, the feasibility of decreasing the run time to 12.4 min by modifying the oven temperature program, for a multiresidue method covering 203 pesticides, was evaluated. Satisfact bry sensitivity results were achieved by reaching a limit of quantitation of 2 μ g kg⁻¹ for a great variety of fruits and vegetables. The validated method based on updated GC-QqQ-MS/MS has confirmed the abovementioned challenges with adequate robustness by its application to routine analyses for 69 real samples. Amadeo R. Fernández-Alba amadeo@ual.es

Agrifood Campus of International Excellence (CeiA3), European Union Reference Laboratory for Pesticide Residues in Fruit and Vegetables, Department of Chemistry and Physics, University of Almería, 04120 Almería, Spain

Wait – I can retire my mag sector?

Dethroning the King GC Triple Quad OK'd For Confirmation of Dioxins in Food in the EU

European Market for Dioxin analysis in [Animal] Feed and Foodstuffs

European Commission

Commission Regulation (EU) No 589/2014 (of 2 June 2014)

laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing Regulation (EU) No 252/2012

Commission Regulation (EU) No 709/2014 (of 20 June 2014)

amending Regulation (EC) No 152/2009 as regards the determination of the levels of dioxins and polychlorinated biphenyls in feed

Except from EU No 589/2014

In addition to the gas chromatography/high resolution mass spectrometry (GC-HRMS), technical progress and (9) developments have shown that also gas chromatography/tandem mass spectrometry (GC-MS/MS) can be used as a confirmatory method for checking compliance with the maximum level (ML). Regulation (EU) No 252/2012 should therefore be replaced by a new Regulation providing for the use of gas chromatography/tandem mass spectrometry (GC-MS/MS) as an appropriate confirmatory method for checking compliance with the maximum level.

In force as of June 20th 2014

Agilent's Dioxins in Feed and Food Analyzer

DETECT AND REPORT TRACE-LEVEL DIOXINS AND DIOXIN-LIKE PCBs

Flow Scheme Clean-up – LCTech 4 Column-Setup

0.0.0

fraction 2

fraction 3

4. Toluol

5. Toluol

Agilent GC/MS/MS Dioxins in Feed and Food Analyzer

Dioxin Analyzer GC and MS Conditions

Column	DB 5MSUI 60 m x	0.25 mmID x 0.25 µ	ım				
Injection port liner	2mm id dimpled s	olitless liner, UI					
Injection mode	Cold-splitless (con	npressed air/CO ₂ co	oled MMI)				
Injection volume	1 μL						
Column Flow	1 mL/min (Retentio	n Time Locked to PCB	105 @ 14.52	20 min)			
Inlet temperature program		60 °C	0.31 min				
imet temperature program	600 °C/min 330 °C 5 min				MS set poi	nts	
Carrier gas	He, constant flow	0.700 mL/min		Electr	on Energy	70 eV	
		60 °C	1 min	Tune		eihs.tune.xml	
	30 °C/min	270 °C	1 min	EM gain		10	
Oven program	2 °C/min	310 °C	0 min	MS1 r	esolution	Unit	
	5 °C/min	350 °C	0.5 min	MS2 r	esolution	Unit	
MS transfer line temperature	350 °C			Collisi	ion Cell	1.5 mL/min N ₂	

GC Conditions same for both fractions!

Developed by Jef Focant CART Liege Belgium

Tune	eihs.tune.xml			
EM gain	10			
MS1 resolution	Unit			
MS2 resolution	Unit			
Collision Coll	1.5 mL/min N_2			
	4 mL/min He			
Quant/Qual transitions	Fraction Specific			
Dwell times	Fraction Specific			
Collision energies	Optimized			
Source temperature	350 °C			
Quad temperatures	150 °C			

Dioxins/Furans – Chromatogram Excellent separation of the difficult Resolution = 0.612Resolution = 0.664hexa-dioxin/furan isomers Peak to Peak Valley = 4.8%Peak to Peak Valley = 14.3% 284 234 8-144 CDF 236 B-14CDF 234678-14 CDF GC Column – DB5MS UI (60m x 0.25mm x 0.25 µm) $TCDD = 10 \text{ ppb}; {}^{13}C_{12} = 100 \text{ ppb}$ x10 6 Cpd 2: PCBs - 81, 77: +EI MRM CID@30.0 (291.9000 -> 221.9000) PCDD 001.D 4 3.9 3.8 3.7 3.6 3.5 3.5 3.4 3.3 123478-HNCDD 23789-HNCDD 123789-HNCDF 1.2 Tetra 1.15 1.1 1.05-2.4 0.95 0.9-Penta 0.85 0.8 0.75 0.7 0.65-20 15 20 2 20 25 20 3 20 35 20 4 20 45 20 5 20 55 20 6 20 65 20 7 20 75 20 8 20 85 0.6-1.05 21.1 21.15 21.2 21.25 Hexa 0.55 0.5 0.45 Hepta 0.4 0.35 0.3-Octa 0.25-N ø 0.2-8 0.15-105 0.1 69 126 0.05 14.5 15 15.5 16.5 17 17.5 18.5 19 19.5 20 20.5 22.5 23 23.5 25 25.5 26 26.5 27 27.5 28 13.5 14 16 18 21 21.5 22 24 24.5 Counts vs. Acquisition Time (min)

PCBs – Chromatogram

Key separation between the difficult mono-ortho substituted PCBs 123 & 118 is achieved on same method parameters as the dioxin method

GC Column – DB 5MS UI (60m x 0.25mm x 0.25 μm)

7010 MS/MS Instrument Detection Limit (IDL_{RSD}) in *fg*

 $IDL_{RSD} = t_{\alpha,n-1} \times RSD \times c$ $100 \qquad c = con$

 $t_{\alpha,n-1}$ = t value (coefficient) at the level of α with the sample size of n-1 c = concentration of the std sample injected

CMDD	DDE	10 reps (CS1)			
CIMPD	ККГ	%RSD	IDL _{RSD} (fg)		
2378-TCDF	1.180	4.92	6.8		
2378-TCDD	1.258	4.28	5.9		
12378-PeCDF	1.206	2.39	16.5		
23478-PeCDF	0.961	2.98	20.6		
12378-PeCDD	1.080	3.91	27.0		
123478-HxCDF	1.278	3.33	23.0		
123678-HxCDF	1.194	2.58	17.8		
234678-HxCDF	1.171	2.71	18.7		
123478-HxCDD	1.184	4.83	33.4		
123678-HxCDD	1.183	4.40	30.4		
123789-HxCDD	1.178	4.92	34.0		
123789-HxCDF	1.906	2.24	15.5		
1234678-HpCDF	1.183	2.54	17.6		
1234678-HpCDD	1.171	3.37	23.3		
1234789-HpCDF	0.875	5.44	37.6		
OCDD	1.391	3.69	51.0		
OCDF	1.963	3.04	42.0		

CMDD	DDE	10 re	eps (CS1)
CIVIPD	KKF	%RSD	IDL _{RSD} (fg)
PCB – 28	1.077	2.40	33.9
PCB – 52	1.465	1.91	26.9
PCB – 101	1.276	1.57	22.1
PCB – 81	1.040	1.41	4.0
PCB – 77	1.024	1.71	4.8
PCB – 123	2.854	16.11	45.5
PCB – 118	0.620	1.43	4.0
PCB – 114	3.316	9.89	27.9
PCB – 153	0.883	1.97	27.8
PCB – 105	0.671	19.44	54.8
PCB – 138	1.402	1.17	16.5
PCB – 126	1.061	5.43	15.3
PCB – 167	1.168	2.11	6.0
PCB – 156	1.053	4.24	12.0
PCB – 157	1.025	3.49	9.8
PCB – 1 80	0.930	1.24	17.5
PCB – 1 69	1.228	2.12	6.0
PCB – 1 89	1.095	3.13	8.8

STDs in solvent

Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/MS/MS

Following EPA Method 1613

Hui Lin¹, Diana Wong², Dale Walker², Tarun Anumol², Craig Marvin²

¹The DOW Chemical Company ²Agilent Technologies

EPA Method 1613B Sample preparation

No changes to sample preparation

EPA 1613B is a performance based method

GC/MS/MS System Parameters

Inlet liner

2mm Dimpled, splitless, UI

GC Parameters

MMI Inlet → MSD Constant Flow Flow 1.1 mL/min

Oven program:

100 °C (2 min) 30 °C/min to 220 °C (16 min) 2 °C/min to 240 °C (5 min) 5 °C/min to 270 °C (4 min) 15 °C/min to 330 °C (6 min)

MRM Parameters and Collision Energy

Toxic TetraCDD/TetraCDF (Segment 1)

Analyte	Precursor Ion	Product Ion	CE
13C-TCDD	333.9	269.9	26
13C-TCDD	331.9	267.9	26
TCDD	321.9	258.9	26
TCDD	319.9	256.9	26
13C-TCDF	317.9	253.9	40
13C-TCDF	315.9	251.9	40
TCDF	305.9	242.9	40
TCDF	303.9	240.9	40

Non-Toxic last eluted TCDD/TCDF and first eluted non-toxic PeCDF (Segment 2)

Archite	Precursor	Product	
Analyte	ION	Ion	UE
13C-PeCDF	351.9	287.9	40
13C-PeCDF	349.9	285.9	40
PeCDF	339.9	276.9	40
PeCDF	337.9	274.9	40
13C-TCDD	333.9	269.9	26
13C-TCDD	331.9	267.9	26
TCDD	321.9	258.9	26
TCDD	319.9	256.9	26
13C-TCDF	317.9	253.9	40
13C-TCDF	315.9	251.9	40
TCDF	305.9	242.9	40
TCDF	303.9	240.9	40

PentaCDD/PentaCDF (Segment 3)

Analyte	Precursor	Product	CE
Analyte	1011	1011	
13C-PeCDD	367.9	302.9	26
13C-PeCDD	365.9	301.9	26
PeCDD	355.9	292.9	26
PeCDD	353.9	290.9	26
13C-PeCDF	351.9	287.9	40
13C-PeCDF	349.9	285.9	40
PeCDF	339.9	276.9	40
PeCDF	337.9	274.9	40

HexaCDD/HexaCDF (Segment 4)

Analyte	Precursor Ion	Product Ion	CE
13C-HxCDD	403.9	339.9	25
13C-HxCDD	401.9	337.9	25
HxCDD	391.8	328.8	25
HxCDD	389.8	326.8	25
13C-HxCDF	387.9	323.9	40
13C-HxCDF	385.9	321.9	40
HxCDF	375.8	312.8	40
HxCDF	373.8	310.8	40

HeptaCDD/HeptaCDF (Segment 5)

Analyte	Precursor Ion	Product Ion	CE
13C-HpCDD	437.8	373.8	24
13C-HpCDD	435.8	371.8	24
HpCDD	425.8	362.8	24
HpCDD	423.8	360.8	24
13C-HpCDF	421.8	357.8	40
13C-HpCDF	419.8	355.8	40
HpCDF	409.8	346.8	40
HpCDF	407.8	344.8	40

OctaCDD/OctaCDF (Segment 6)

Analyte	Precursor Ion	Product Ion	CE
13C-OCDD	471.8	407.8	24
13C-OCDD	469.8	405.8	24
OCDD	459.7	396.7	24
OCDD	457.7	394.7	24
13C-OCDF	455.8	391.8	40
13C-OCDF	453.8	389.8	40
OCDF	443.7	380.7	40
OCDF	441.7	378.7	40

Unit resolution for precursor and product ions

Isomer Specificity EPA Method 1613B Requirements

Percent Valley

Percent valley must be less than 25% between the toxic 2378-TCDD and the closest eluted isomers

Order of Isomer Specificity

- The order of specificity standards of TCDD isomers are slightly different on a DB-5MS column (used in current study) compared to the DB-5 column (recommended in EPA 1613b)
- Peer review journals by The DOW Chemical Company published elution order of EPA Method 1613B dioxins using the DB-5MS UI (Fishman et al., 2004 and 2011; Wilken et al., 2008)

(EPA Method 1613B, 1994)

GC Retention Time Window Defining Solution EPA Method 1613B Requirements

TABLE 5. GC RETENTION TIME WINDOW DEFINING SOLUTION AND ISOMERSPECIFICITY TEST STANDARD (SECTION 7.15)

	DB-5 Column GC Retention-Time Wi	ndow Defining Solution
CDD/CDF	First Eluted	Last Eluted
TCDF	1,3,6,8-	1,2,8,9-
TCDD	1,3,6,8-	1,2,8,9-
PeCDF	1,3,4,6,8-	1,2,3,8,9-
PeCDD	1,2,4,7,9-	1,2,3,8,9-
HxCDF	1,2,3,4,6,8-	1,2,3,4,8,9-
HxCDD	1,2,4,6,7,9-	1,2,3,4,6,7- 1,2,3,7,8 ,
HpCDF	1,2,3,4,6,7,8-	1,2,3,4,7,8,9-
HpCDD	1,2,3,4,6,7,9-	1,2,3,4,6,7,8-

EPA Method 1613B (1994): Window Defining Solution defines the beginning (first eluted) and ending (last eluted) retention times for dioxin and furan isomers to demonstrate isomer specificity. Standards must contain compounds listed in this order

Tetrachlorinated dibenzodioxins (TCDD)

Peaks match between GCMS/MS vs High Resolution GC/MS

Calibration and Linear Range

Response Factor, Signal-to-noise, and Relative Retention Time all meet the 1613B criteria

Cal. Sample Name	Level	Name	Avg. RF	Avg. RF RSD	CS1 RF	Difference	CS1 S/N	CS1 RRT	1613b RRT criteria	Pass/Fail
200 ppt Cal Std.	L1	2378-TCDD	1.123	6	1.004	-11%	25	1.002	0.999-1.002	Pass
500 ppt Cal Std	12	2378-TCDF	0.97	2.9	0.943	-3%	50	1.001	0.999-1.003	Pass
	LZ	12378-PeCDD	0.985	3.5	0.994	1%	42	1.001	0.999-1.002	Pass
1000 ppt Cal Std.	L3	12378-PeCDF	0.991	2.8	1.025	3%	54	1.001	0.999-1.002	Pass
4000 ppt Cal Std.	L4	23478-PeCDF	1.007	2.1	0.997	-1%	63	1.000	0.999-1.002	Pass
		123478-HxCDD	0.991	4.2	0.999	1%	21	1.001	0.999-1.001	Pass
10000 ppt Cal Std.	L5	123478-HxCDF	0.924	4.4	0.921	0%	33	1.001	0.998-1.004	Pass
50000 ppt Cal Std.	L6	123678-HxCDD	0.929	3.6	0.917	-1%	25	1.000	1.000-1.019	Pass
250000 ppt Cal Std	17	123678-HxCDF	0.908	4.5	0.877	-3%	43	1.000	0.999-1.001	Pass
		123789-HxCDD	1.027	5.3	1.000	-3%	42	1.000	0.997-1.005	Pass
1000000 ppt Cal Std.	L8	123789-HxCDF	0.912	5.2	0.902	-1%	38	1.000	0.999-1.001	Pass
2500000 ppt Cal Std.	L9	234678-HxCDF	0.983	4.1	0.999	2%	48	1.000	0.999-1.001	Pass
Calibration Otan		1234678-HpCDD	1.008	4	1.033	2%	83	1.000	0.999-1.001	Pass
Calibration Stan	dard 1	1234678-HpCDF	0.912	3.5	0.943	3%	92	1.000	0.999-1.001	Pass
(CS1) for EPA 1	<mark>613B</mark>	1234789-HpCDF	0.902	4.2	0.948	5%	90	1.000	0.999-1.001	Pass
		OCDD	1.056	2.4	1.040	-1%	150	1.000	0.999-1.001	Pass
		OCDF	0.913	3.5	0.940	3%	148	1.000	0.999-1.008	Pass
Example of RF calculation for $\mathbf{RF} = \frac{A_{2,3,7,8-T}}{A_{13C,5}}$				A _{2,3,7,8} –tci A _{13C,St}	DD,Std d	$\times \frac{M_1}{M_{2,3,7,3}}$	13C, <i>Std</i> (ng) 8–TCDD, <i>Std</i>	(<i>ng</i>)		

1613B Criteria: Avg RSD < 10%; Difference (CS1 RF and Average RF) < 15%; S/N (CS1) > 10; Relative Retention Time (CS1) must meet criteria

Verification Standard Recoveries

Calibration is verified and passed the 1613B criteria

	Chemstatio	Theoretical			
Comp. Name	n Amt (ng)	Amt (ng)	% Recovery	1613b criteria	Pass/Fail
2378-TCDF	1.815	2	91%	84-120%	Pass
2378-TCDD	1.833	2	92%	78-129%	Pass
12378-PCDF	4.790	5	96%	82-120%	Pass
23478-PCDF	4.705	5	94%	82-122%	Pass
12378-PCDD	4.742	5	95%	78-130%	Pass
123478-HxCDF	4.642	5	93%	90-112%	Pass
123678-HxCDF	4.629	5	93%	88-114%	Pass
234678-HxCDF	4.600	5	92%	88-114%	Pass
123789-HxCDF	4.701	5	94%	90-112%	Pass
123478-HxCDD	4.342	5	87%	78-128%	Pass
123678-HxCDD	4.385	5	88%	78-128%	Pass
123789-HxCDD	4.422	5	88%	82-122%	Pass
1234678-HpCDF	4.823	5	96%	90-110%	Pass
1234789-HpCDF	5.097	5	102%	86-116%	Pass
1234678-HpCDD	4.840	5	97%	86-116%	Pass
OCDF	9.221	10	92%	63-159%	Pass
OCDD	9.175	10	92%	79-126%	Pass

Low working range and sensitivity

50 femtogram of 2378-TCDD can be detected by GC/MS/MS

Primary Native 2378-TCDD S/N = 5.8

Secondary Native 2378-TCDD S/N = 4.6

Method 1613 Criteria

- > 2.5 signal to noise ratio
- The relative ion intensities is within 15% difference to the calibration average

Conclusion EPA Method 1613B Criteria are met using GC/MS/MS

- <25% valley between toxic 2378-TCDD and the closest isomer
- Isomer specificity observed for all CDDs and CDFs
- All analytes elute within the defined time window (between first and last eluted in the window defining solution)
- CDDs/CDFs calibration using isotope dilution: RSD, Cal Standard 1 RF, S/N, Relative RT, and recovery meet the 1613B criteria
- Low femtogram level of CDD/CDF can be detected by GC/MS/MS

Wait – that's not how you use a triple quad. Or is it?

Determination of polycyclic aromatic hydrocarbons in surface water using a simplified liquid-liquid microextraction and pseudo-MRM GC/MS/MS

Marcus Kim, Ph.D. Agilent Technologies marcus.kim@agilent.com GCMSMS@twitter.com

Polycyclic Aromatic Hydrocarbons

- Ubiquitous pyrogenic compounds created by incomplete combustion
- Mostly of anthropogenic sources
- Heavier PAHs (more than four rings) tend to adsorb to particulate matter, while lighter PAHs (less than four rings) tend to remain gaseous until removed via precipitation
- PAH's have low solubility in water, but can be absorbed by plants and concentrate in soil
- PAH's leach into water
- PAH levels in soils near refineries have been measured to be 200,000 μg/kg (200 ppm)

Hydrocarbon/PAH analyses is one of most common services offered in contract labs

- Extraction out of soil or water requires multi-steps; large volumes of solvent; silica or florisil gel clean ups
- Analysis is typically performed on a single quadrupole GCMS and GC-FID

Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil - Tier 1 Method

The CCME Tier 1 method

- F1, i.e., n-C₆ to n-C₁₀, as defined by this method, from which the results of a BTEX analysis have been subtracted, described as F1-BTEX
- ➢ F2, i.e., n-C₁₀ to n-C₁₆, as defined by this method from which naphthalene has been subtracted, described as F2-napth
- F3, i.e., n-C₁₆ to n-C₃₄, as defined by this method, less the PAHs phenanthrene, benz(a)anthracene, benzo(b)fluoranthene, benzo(k)fluoranthene, benzo(a)pyrene, fluoranthene, dibenz(a,h)anthracene, indeno(1,2,3-c,d)pyrene and pyrene, if analyzed. This is described as F3-PAH
- F4, either as n-C₃₄ to n-C₅₀ obtained by gas chromatography from analysis of extractable hydrocarbons as defined by this method, or F4G, gravimetric heavy hydrocarbons, whichever is the greater result.

Multiple Reaction Monitoring (MRM)

PAH's are inherently stable

250 m/z

Product ion is typically 1/10th intensity of precursor ion

Pseudo-MRM approach is to tune collision energy to fragment isobaric co-eluters and monitor precursor to precursor transitions

Rapid and sensitive method for the determination of polycyclic aromatic hydrocarbons in soils using pseudo multiple reaction monitoring gas chromatography/tandem mass spectrometry

ABSTRACT

Dayue Shang^{a,*}, Marcus Kim^b, Maxine Haberl^a

^a Pacific and Yukon Laboratory for Environmental Testing, Science and Technology Branch, Pacific Environmental Science Centre, Environment Canada North Vancouver, British Columbia, Canada ^b Agilent Technologies Inc., Mississauga, Ontario, Canada

A	R	т	T	C	r.	F	1	N	F	0
α	I.			~				1.4		0

Article history: Received 30 October 2013 Received in revised form 24 January 2014 Accepted 27 January 2014 Available online 3 February 2014	A method for the rapid determinati established based on a simplified sol monitoring mode (PMRM), a techni PMRM approach proved superior to specificity, and significant reductior
Konwords:	could be readily confirmed by their

ion of 18 polycyclic aromatic hydrocarbons (PAHs) in soil has been vent extraction and GC/MS/MS operated in pseudo multiple reaction ique where the two quadrupoles mass monitor the same m/z. The the classic single quadrupole technique, with enhanced sensitivity, in time consuming sample clean-up procedures. Trace level PAHs retention times and characteristic ions. The limit of quantitation in

- Collision energy was tuned to find optimum of peak area and signal/noise
- Maximize peak area for maximum sensitivity
- At high collision energies, precursor ion is gone but product ion intensity is also low

Pseudo-MRM for PAH but it is true MRM for isobaric, co-eluting interferences

Agilent 7890B GC & 7000C MS/MS

- Due to selective nature of pMRM, the sample extraction was performed with 20mL of DCM; wrist shaking and centrifugation
- Sample extraction procedure ~30 minutes
- No silica gel clean up step

30

Comparison of pMRM technique vs. conventional SQ

	Agilent 7000 t	Agilent 7000 triple quadrupole			Agilent 5975 single quadrupole		
Compound	2 p p b	10 p p b	20 p p b	2 p p b	10 p p b	20 p p b	
Napthalene	999	3909	8121	ND	29	57	
Acenaphthylene	537	2619	5758	ND	25	45	
Acenaphthene	343	1190	2877	ND	33	33	
Fluorene	ND	1551	2790	ND	22	42	
Phenanthrene	1372	4810	6462	ND	ND	ND	
Anthracene	930	2046	4213	ND	ND	ND	
Fluoranthene	1325	3659	7925	ND	46	86	
Pyrene	1641	4056	9323	ND	46	94	
Benzo(a)anthracene	ND	955	2521	ND	ND	ND	
Chrysene	1029	2791	6306	ND	ND	ND	
Benzo(b)fluoranthene	ND	1859	4778	ND	35	70	
Benzo(k)fluoranthene	ND	652	1411	ND	35	85	
Benzo(e) pyrene	405	1841	3922	ND	42	85	
Benzo(a) pyrene	355	1159	3230	ND	33	74	
Perylene	813	1976	4363	ND	49	102	
Indeno(1,2,3-cd) pyrene	202	587	2237	ND	17	47	
Benzo(g,h,i)perylene	455	1531	3963	ND	29	63	
Dibenz(a,h)anthracene	ND	804	2293	ND	0	45	

*ND = Not detected.

- 12 of the 18 PAH's were improved with pMRM
- CALA proficiency testing showed this technique to be accurate for most PAHs

CALA Proficiency	testing sample (C-18-04: measured v	vs. assigned concentrations.
------------------	------------------	---------------------	------------------------------

Compound	Sample	Actual concentration (p p b)	Calculated concentration (p p b)	Accuracy (%)
Acenaphthene	C-18-04	1119	1161	104
Acenaphthylene	C-18-04	1343	1501	112
Anthracene	C-18-04	1224	1543	126
Benzo (a) anthracene	C-18-04	6076	5363	88
Benzo (a) pyrene	C-18-04	4007	3222	80
Benzo (b) fluoranthene	C-18-04	7869	5198	66
Benzo (g,h,i) perylene	C-18-04	4452	3843	86
Benzo (k) fluoranthene	C-18-04	4119	4127	100
Chrysene	C-18-04	6784	5947	88
Dibenzo (a,h) anthracene	C-18-04	1029	1202	117
Fluoranthene	C-18-04	19517	14658	75
Fluorene	C-18-04	1322	1095	83
Indeno (1,2,3 - cd) pyrene	C-18-04	5045	4400	87
Naphthalene	C-18-04	36372	33325	92
Phenanthrene	C-18-04	16835	13059	78
Pyrene	C-18-04	13368	14165	106

Measured concentrations vs. assigned concentrations in CALA PT-C-18-04.

Extractable Petroleum Hydrocarbons

From Woods Hole Oceanographic Institute

About 1.4B litres (9M barrels or 380M gallons) of oil enter the world's oceans and coastal waterways each year (natural and human sources)

Significant pain points for Extractable Petroleum Hydrocarbons

- Sampling volumes of **1L** (EPA methods 610 and 3510c)
- Significant costs associated with transport
- Samples break during transit
- Significant usage of solvents for extraction (cost and disposal)
- Extensive sample cleanup with columns

Can we apply technique of pMRM to reduce sampling volume?

Agilent's Programmable Inlet – MultiMode Inlet (MMI)

Temperature range of -160C to 450C Heating @ 15C/sec (900C/min)

Cancel

Net

Help

Able to reduce extractable volumes to 100 mL of water

Agilent Hexapole Collision Cell with Quench Gas

Agilent

- Higher transmission of ions through collision cell
- Collision cooling and focusing of ions

Helium only as collision gas

Determination of polycyclic aromatic hydrocarbons in surface water using a simplified liquid-liquid microextraction and pseudo-MRM GC/MS/MS

Jeffrey Yan, Dayue Shang, Marcus Kim, Maxine Haberl, Honoria Kwok, Pamela Brunswick, Ceara MacInnis, Graham van Aggelen

Extraction of 50mL of water with

Detection down to 2 ppt

	Detected Total Concentration (ng/L)							Average %	Mean	Std.	% Rel	
Compound	S1	S2	S 3	S4	S 5	S 6	S 7	S8	Recovery	(ng/L)	Dev. (ng/L)	Std. Dev.
Acenapthene	10.2	9.3	9.2	9.4	10.3	9.6	10.4	9.6	98	9.8	0.470	4.8
Acenaphthylene	9.3	9.4	9.7	9.2	9.0	9.5	8.8	9.5	93	9.3	0.286	3.1
Anthracene	9.1	9.1	8.9	9.3	9.3	9.0	10.2	8.9	92	9.2	0.431	4.7
Benzo(a)anthracene	10.4	10.3	9.5	10.1	9.5	9.8	9.4	9.6	98	9.8	0.391	4.0
Benzo(a)pyrene	9.3	9.7	9.1	9.1	9.7	10.2	9.7	9.3	95	9.5	0.378	4.0
Benzo(e)pyrene	11.1	11.0	10.7	10.5	10.6	10.9	10.4	11.1	108	10.8	0.263	2.4
Benzo(b)fluoranthene	11.5	11.4	11.4	11.9	11.8	11.1	10.5	11.8	114	11.4	0.443	3.9
Benzo(g,h,i)Perylene	9.3	9.5	9.7	10.5	10.1	9.6	9.9	9.6	98	9.8	0.370	3.8
Benzo(k)fluoranthene	10.0	9.8	9.9	9.9	9.8	10.2	9.9	10.1	100	10.0	0.142	1.4
Chrysene	10.0	9.7	9.7	9.9	9.4	9.5	9.9	9.7	97	9.7	0.202	2.1
Dibenz(a,h)anthracene	8.3	8.3	7.9	8.6	8.2	8.1	8.4	8.3	83	8.3	0.217	2.6
Fluoranthene	10.4	10.4	10.0	10.6	10.5	10.7	10.4	10.0	104	10.4	0.252	2.4
Fluorene	9.2	9.5	8.8	9.4	10.0	9.6	9.9	9.0	94	9.4	0.411	4.4
Indeno(1,2,3-cd)pyrene	8.9	8.4	8.8	8.2	8.4	8.7	8.0	8.3	85	8.5	0.297	3.5
Naphthalene	8.3	8.3	8.8	8.4	8.3	9.1	8.3	8.6	85	8.5	0.284	3.3
Perylene	9.6	9.6	9.1	9.7	10.1	9.9	9.4	9.8	96	9.6	0.319	3.3
Phenanthrene	8.3	8.2	7.9	8.2	7.9	7.7	8.3	7.7	80	8.0	0.259	3.2
Pyrene	10.2	10.3	10.4	10.1	9.8	10.4	9.6	9.9	101	10.1	0.297	2.9

Table 2) Method Validation: Limit of Quantitation Replicates at PAH Concentration of 10 ng/L in Water.

Analytical Methods

PAPER

38

View Article Online View Journal | View Issue

(Check for updates

Cite this: Anal. Methods, 2018, 10, 405

Determination of polycyclic aromatic hydrocarbons in surface water using simplified liquid–liquid micro-extraction and pseudo-MRM GC/MS/MS⁺

Jeffrey Yan,^a Marcus Kim,^b Maxine Haberl,^a Honoria Kwok,^a Pamela Brunswick,^a Ceara MacInnis,^a Graham van Aggelen^a and Dayue Shang^b*^a

A simplified liquid–liquid micro-extraction (LLME) GC/MS/MS method was developed for the determination of 18 polycyclic aromatic hydrocarbons (PAHs) in surface water. This method utilizes a pseudo multiple

Sample prep is similar to the soil example shown earlier, but even simpler. Starts with 50 mL, and involves only 6 steps. Takes less than 10 minutes!

Extracted Ion Chromatogram of 18 PAHs at 0.8 µg/L (0.8 ppb) in Water

Example chromatograms of 1 μ g/L target PAHs spiked in hydrocarbon standard (shown in blue) and neat DCM (shown in red).

1ppm hydrocarbon with He pMRM

1ppm hydrocarbon in El scan

Representative curves (10 point calibration from 0.1 µg/L to 2000 µg/L)

Conclusion

- pMRM with He is an extremely efficient method for low level detection of PAHs in hydrocarbon matrix
- The He pMRM has been subjected to 8 separate proficiency tests (PT) from 3 different organizations (Phenova of Phenomenex, Environment and Climate Change Canada, and The Canadian Association for Laboratory Accreditation Inc. (CALA)) and has been extremely successful
 - 6 separate CALA Proficiency Tests between 2015-2017 with scores of 84-96 out of 100
- The validated He pMRM method has been (and continues to be) used routinely to analyze PAH concentrations in over 500 surface water samples from the Athabasca oil sands region, oil spill cases, and other environmental monitoring projects
- Method is fast, inexpensive, green and easy to switch between classic MRM and He pMRM

Dr. Dayue Shang – Environment Canada, North Vancouver Maxine Haberl Jeffrey Yan Honoria Kwok Dr. Pamela Brunswick Ceara MacInnis

Wait – I can replace my ion trap?

Nitrosamine Analysis in Drinking Water using GC-MS/MS

Meeting Equivalence to EPA Method 521

Andy Eaton¹, Charles Grady¹, Konjit Tadigo¹ Yongtao Li², William Davis² Ralph Hindle³ Diana Wong⁴, Ron Honnold⁴, Craig Marvin⁴

¹Eurofins Eaton Analytical (EEA) – Monrovia, CA ²Eurofins Eaton Analytical (EEA) – South Bend, IN ³Vogon Labs – Cochrane, AB, Canada ⁴Agilent Technologies

Background and Purpose of Project

- EPA Method 521 (2004): "Determination of nitrosamines in drinking water by solid phase extraction and capillary column gas chromatography with large volume injection and chemical ionization tandem mass spectrometry"
- Ion Trap GC/MS is the approved instrumentation for Method 521 but it is being obsoleted
- EPA might regulate nitrosamines due to the occurrence in drinking water and wastewater (particular NDMA)
- EPA Office of Ground Water/Drinking water (OGWDW) considers alternate detection techniques without changing the guidelines for sample preparation
- Purpose of the project is to directly compare Triple Quadrupole GC/MS (GC-MS/MS) and the currently used Ion Trap GC/MS (GC-IT) method using split samples set
- Phase I: Varian 4000 GC-IT vs Agilent 7010 GC-MS/MS
- Phase II: Three Lab Validation Studies of GC-MS/MS Method

48

June 5, 2018

Varian 4000 GC/MS Ion Trap System

Nitrosamines Investigated

NMOR were evaluated in addition to all nitrosamines in Method 521

Drinking Water Extraction

All water samples were extracted manually. No changes made to Method 521 sample preparation

GC-MS/MS System Parameters

Inlet liner

4mm double-tapered, UI

GC Parameters

MMI Inlet → MSD Constant Flow Flow 1.2 mL/min

Column DB-1701ms UI

14% cyanopropylphenyl 86% dimethylpolysiloxane

Oven program:

33 °C (1min) 35 °C/min to 80 °C (2 min) 10 °C/min to 140 °C (0 min) 50 °C/min to 280 °C (2 min)

MRM Transitions using GC-MS/MS

Optimized using MS1 Scan, Product Ion Scan, and Multiple Reaction Monitoring (MRM)

Analyte	Retention time (min)	Precursor ion (m/z)	Product ion (m/z)	Collision Energy	
NDMA-d6 (SUR)	7 02	80	50	8	
	1.02	80	46	25	
ΝΟΜΑ	7.05	74	44	6	
	1.00	74	42	22	
NMEA	8 58	88	71	4	
	0.00	88	42	23	
NDEA	9 79	102	85	4	
	5.15	102	44	12	
NDPA-d14 (IS)	11 78	144	126	10	
NDFA-014 (13)	11.70	144	50	20	
NDPA	11.83	130	43	10	
	11.03	101	70	10	
NMOR	12.09	116	86	2	
	12.03	116	56	15	
NPYR		100	55	7	
	12.3	100	70	7	
		100	43	10	
NPIP	12 50	114	84	7	
	12.00	114	55	25	
NDBA		158	141	10	
	12.89	158	99	10	
		116	99	10	

Nitrosamines analysis using GC-MS/MS

Triple Quad Run Time is 15 min, Baseline separation observed for NDPA, NPYR, and NMOR

Nitrosamine analysis using GC-IT

40 min run-time, Poor baseline separation for NDPA, NPYR, and NMOR

Nitrosamine Analysis in Sample Water Extracts using GC-MS/MS 0.5 ppt nitrosamines in Sample Water Extract

Internal standard is not plotted as 20 ppt overwhelms TIC when plotted with 0.5ppt analytes in extract.

Field Sample Comparison (GC-IT vs GC-MS/MS)

Correlation observed in samples and surrogates

Real Extracted Water Samples

NDMA y = 1.1579x - 3.9311 $R^2 = 0.9915$ **(ug/l**) 140 120 100 **Γ-QQQ Results (%)** Triple quad Ion Trap Result (ng/L)

Surrogate recoveries are within limits

Note:

- Real Extracted Samples were analyzed using GC-IT and GC-QQQ
- Same holding time, standards, extraction process, mixes

LCMRL and DL of water extract (GC-MS/MS vs GC-IT) GC-MS/MS achieves lower DL and LCMRL

Note: n/a LCMRL and DL on GC-IT is above the highest spiking level or spiking level exceeds working range for NMOR and NPYR. Spiking levels Range 0.1 to 10 ppt

GC-MS/MS used in Interlaboratory Validation Study

LAB A and LAB B

7010 GC-MS/MS High Efficiency Source

LAB C

7000 GC-MS/MS Extractor Source

Complete Source Redesign on the 7010 GC-MS/MS

20x more ions

Is the High Efficiency Source required to meet the LCMRL?

LCMRL Results from Interlaboratory Validation Study Both GC-MS/MS systems achieved lower LCMRL and DL than Method 521 (2004)

Four replicates at 0.1, 0.25, 0.50, 1.0, 2.0, 3.0, 4.0, 5.0, 8.0, and 10.0 ppt *Lab C NMDA at 1.0, 2.0, 3.0, 4.0, 5.0, 8.0, and 10.0 ppt

Method 521 are limits from EPA 521 with exception of NMOR

Calibration Curve of ILS $R^2 \ge 0.99$ for both 7000 and 7010 GC-MS/MS

Analyte	7010 Lab A	7010 Lab B	7000 Lab C
NDMA	0.9999	0.9979	0.9935
NMEA	0.9999	0.9983	0.9988
NDEA	0.9999	0.9993	0.9986
NDPA	0.9998	0.9987	0.9965
NMOR	1.0000	0.9993	0.9992
NPYR	0.9981	0.9994	0.9976
NPIP	0.9999	0.9993	0.9979
NDBA	0.9996	0.9990	0.9985

Linear, 1/x weight, 11 calibration points (0.0625,0.125,0.25,0.5,1.0,2.0,4.0,10,20,40,100 ppt)

Phase I Summary – GC-MS/MS Advantages

Phase II Summary – Interlaboratory Validation

Method Compliance
Both Systems Work!

7010 GC-MS/MS High Efficiency Source

7000 GC-MS/MS Extractor Source

LCMRL and Detection Levels

Detection Limit (Interlaboratory) 0.7 0.6 0.5 0.4 0.25 0.3 0.18 0.13 0.13 0.2 0.1 NOMA NMEA NDEA NPIP NDBA NOPA NNOP NEXP

Current Status

• Method performance was verified by three separate laboratories

- EPA has provided a letter of method equivalency
- Application Note: 5991-9224EN

Nitrosamines Analysis in Drinking Water Using GC/MS/MS—Meeting Equivalence to EPA Method 521

Using Agilent 7010 and 7000 triple quadrupole GC/MS systems

Andy Eaton, Charles Grady, and Konjit Tadigo Eurofins Eaton Analytical, Monrovia, CA, USA Yongtao Li and William Davis

Authors

Eurofins Eaton Analytical, South Bend, IN, USA

Ralph Hindle Vogon Laboratories, Cochrane, AB, Canada

Diana Wong, Ron Honnold, and Craig Marvin Agilent Technologies, Inc. Abstract

The Eurofins Eaton Analytical-Agilent Method 521.1 (EEA-Agilent Method 521.1) is based on a multilaboratory study of nitrosamines in drinking water using triple guadrupole GC/MS (GC/MS/MS) in electron ionization (EI) mode1. Currently, ion trap GC/MS (GC/IT) is the approved technology for the United States Environmental Protection Agency (EPA) Method 521, but GC-IT is being obsoleted. The EPA was open to approval of alternate detection methods as long as the sample preparation step was unchanged. Analytes in EPA Method 521 were investigated with the addition of N-nitrosomorpholine (NMOR). The study was divided into two phases. In phase I, Lab A demonstrated that GC/MS/MS achieved lower lowest concentration minimum reporting levels (LCMRL) and detection limits (DL) than the approved GC/IT. Lower injection volume and shorter analysis times were accomplished with the GC/MS/MS. Good correlation between GC/MS/MS and GC/IT was observed when analyzing nitrosamines in numerous field samples. In phase II, Lab A extracts and splits LCMRL samples (32) to Lab B and Lab C for validation using Agilent 7010 and 7000 GC/MS/MS systems, respectively. Both 7010 and 7000 GC/MS/MS results were better than the LCMRL and DL requirements in Method 521. A linear calibration curve was achieved with R² >0.99. Method performance was verified by three separate laboratories and the EPA has provided a letter of method equivalency.

Acknowledgements – Interlaboratory Validation Study

Eurofins Eaton Analytical Monrovia, California (USA)

> Andy Eaton Chuck Grady Konjit Tadigo

Eurofins Eaton Analytical South Bend, Indiana (USA)

> Bruce Li Bill Davis

Vogon Laboratories Cochrane, Alberta (Canada)

Ralph Hindle

Wait – I can do volatiles?

Dr. Detlef Knappe Professor of Civil, Construction and Environmental Engineering North Carolina State University knappe@ncsu.edu

Combined CVOC and 1,4-Dioxane Analytical Method Overview

EPA Methods 522

"Determination of 1,4-dioxane in Drinking Water by Solid Phase Extraction (SPE) and Gas Chromatography/ Mass Spectrometry (GC/MS) with Selected Ion Monitoring (SIM)"

EPA Method 524.3

"U.S. EPA Method 524.3 for Analysis of Volatile Organic Compounds (VOCs) in Finished Drinking Water"

Combined method for VOCs and 1,4-dioxane

1,4-Dioxane and VOC Challenges

- Co-occurrence of 1,4-dioxane and chlorinated solvents is common in contaminated groundwater
 - 1,4-dioxane was a stabilizer for 1,1,1-trichloroethane (1,1,1-TCA)
 - Trichloroethene (TCE) use often preceded
 1,1,1-trichloroethane use
- Separate analytical methods

 EPA Method 522 for 1,4-dioxane
 EPA Method 524.3 for VOCs
- Recent CA database evaluation (Adamson et al. 2014 ES&T Letters 1: 254-258)
 - 95% of 1,4-dioxane sites contained other chlorinated solvents
 - 76% of 1,4-dioxane sites contained 1,1,1-TCA
 - No 1,4-dioxane analyses were conducted at 67% of sites containing 1,1,1-TCA

Methods and Materials

- Analytes
 - $_{\odot}$ 52 VOCs from method 524.3
 - Vinyl Chloride, 1,3-butadiene
 - Tert-butyl alcohol, 1,4-dioxane, 1,3-dioxane, 1,3-dioxolane
- Internal standards
 - o 1,4-difluorobenzene
 - o 1,4-dioxane-d8
 - \circ chlorobenzene-d5
 - 1,2,3-trichloropropane d5 for low concentration method

Analytical Instrumentation

- Purge and Trap
 - 5 mL sample volume
 - Heated at 60°C
 - o **#9 trap**

- Mass spectrometer Agilent 7010 Selected-ion monitoring Most compounds Triple quadrupole with MRM 1,4D, 1,2,3-TCP, DBM
- Gas chromatograph
 - Agilent 7890B
 - Column: DB-624 Ultra Inert (Agilent 121-1324UI)
 - Temperature program:

Temperature Rate	Temperature	Hold	End Time	
	35 °C	4 minutes	4 minutes	
15 °C per minute	240 °C	0 minutes	17.667 minutes	

Trip[le Quadrupole GC/MS System

MMI Inlet and MS Settings

	High Concetnration	Low Concentr	ation	
Parameter	Setting	Setting		
Temperature	200°C	200°C		
Pressure	14.125 psi	14.125 psi		
Total Flow 215.7 mL/min		215.7 mL/min		
Septum Purge Flow 5 mL/min		5 mL/min		
Mode	Split	Split	Transfer Line Temperature	250°C
Split Ratio	300 to1	30 to1	Tune File	atunes.eihs.tune.xml
Split Flow	210 mL/min	21 mL/min	Ion Source	Electron Impact
			Source Temperature	270°C
			Electron Energy	Tune setting, 70 eV
				Gain, EM Saver, Limit
			Detector Setting	1E+09
			Solvent Delay	1.05 min
				On, Time = 0 min, Peak
			Time Filtering	width = 0.8 sec
				Automatically subtract
			Miscellaneous	baseline

MRM Used to Resolve Coeluting DBM and 1,4-Dioxane d8

- 1,4-Doxane d8 (internal standard for 1,4-dioxane)
- Dibromomethane (quantification ion 174, qualifier ions 95/93)
 - □ Interferes with m/z 96, 64, 62
 - MRM allows 1,4-dioxane d8 to be separated from dibromomethane

DBM:174	Collision Energy 0eV	m/z 174
DBM: 96	Collision Energy 20eV	m/z 94 & 61
DBM: 95	Collision Energy 0eV	m/z 95
DBM: 93	Collision Energy 0eV	m/z 93
DBM: 88	Collision Energy 17eV	m/z 82 & 81
14D d8: 96	Collision Energy 20eV	m/z 96, 64 & 62
14D: 88	Collision Energy 17eV	m/z 88, 57 & 43

1,4-Dioxane

1,4-Dioxane d8

Ion chromatogram: Precursor Ion m/z 96

Product Ions Used: m/z 64 / m/z 62

MRM Used for Low Concentrations

- 1,2,3-Trichloropropane d5 desired as internal standard for low concentration TCP analyses
- Interference from Bromobenzene with 1,2,3-Trichloropropane d5

With MRM 1,2,3-Trichloropropane-d5 yields stable
 response in the presence of bromobenzene

• MRM also reduces background noise

Expected to result in lower quantification limit

1,2,3-Trichloropropane

1,2,3-Trichloropropane d5

Low Concentration Curve: 1,2,3-Trichloropropane

Wait – it's not just for MS/MS?

Scanning on a Triple Quad

So far, just like a single quad... ...transmission <100% and possible fragmentation... ...transmission <100%

Maybe scanning in a triple quad is not a good idea. But wait...

Scanning on a Triple Quad

all-pass mode...

...collisional cooling and focusing... ...scan Q3 to produce low noise, high quality scan data

Triple Quad Scan Data Used in a Series of Tea Aroma Studies

CHEMISTRY

Food Research International 108 (2018) 413-422

Study of the aroma formation and transformation during the manufacturing process of oolong tea by solid-phase micro-extraction and gas chromatography–mass spectrometry combined with chemometrics

Chengying Ma^a, Junxing Li^{b,*}, Wei Chen^a, Wenwen Wang^c, Dandan Qi^a, Shi Pang^a, Aiqing Miao^{a,*}

^a Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

^b Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

^c Agilent Technologies (China) Co. Ltd., Beijing 100102, China

Food Chemistry 265 (2018) 189-199

Study on the effects of rapid aging technology on the aroma quality of white tea using GC–MS combined with chemometrics: In comparison with natural aged and fresh white tea

Dandan Qi^{a,1}, Aiqing Miao^{a,1}, Junxi Cao^a, Wenwen Wang^c, Wei Chen^a, Shi Pang^a, Xiugu He^b, Chengying Ma^{a,*}

^a Tea Research Institute, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory of Tea Plant Resources Innovation & Utilization, Guangzhou 510640. China

^b Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China

^c Agilent Technologies (China) Co. Ltd., Beijing 100102, China

Chemometric Methods for the Analysis of Graftage-Related Black Tea Aroma Variation by Solid Phase Mirco-Extraction and Gas Chromatography-Mass Spectrometry

Application Note

Authors

Wei Chen, Chengying Ma, Aiqing Miao, Shi Pang, and Dandan Qi Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong, China Wenwen Wang Agilent Technologies, Inc. Beijing, China

Abstract

A solid-phase micro-extraction (SPME) and gas chromatography/triple quadrupole mass spectrometry (GC/MS/MS) method was developed to analyze graftage-related black tea samples. Data extraction and statistical analysis were performed using Agilent MassHunter Profinder and Agilent Mass Profiler Professional (MPP) software. The characteristic volatile compounds, which were identified or tentatively identified, were subjected to principle component analysis and hierarchical clustering analysis to reveal the differences among tea samples.

Graftage-related Tea Aroma Variation

For 5 replicates of each graftage type: Tea infused with boiling water, then held in a water bath for 4 min at 60 °C. Extracted at 60 °C for 40 min with a DVB/CAR/PDMS-50/30µm SPME fiber. SPME fiber desorbed for 4.5 min at 270 °C. 7890B/7000D operated in scan mode

Components Identifed and Examined Across Multiple Samples ProFinder and Mass Profiler Professional with ID Browser

🖽 Aailen	ıt MassHun	ter Profinder B.(8.00 - 20170116	i							_	_ 0 X	
File Ed	lit View I	Method Wizard	ls Configuratio	n Help									
🗋 🗋 🖻		Add/Remove S	ample Files	μQΔ	ու ու ու	olor by Sample Group	Wizards 🕶 🗗	🛧 🟠 🕂 6	- 🙀				
	ound Grou	ups (666 total)							×	A Chromatogram Results	×	MS Spectrum Results	
	「「 副 Automatically Show Columns」 開発								5				
BHR Automatically Show Columns Leg Groun ▽-b RT (Tot) ♡-b RT (mod) ♡-b Missed ♡-b Score (MFF mav) ♡-b Heinith (mari) ♡-b D'							EIC's		Spectra				
Group	3 N KI	(Igt) 15.85	(med) ¥ 19 Four 15.85	a v v ⊷ mis 30	0	(MFE, max) ¥ 100	1712700	(I(avg) ¥ + Sat 15.85		x106 Cpd 3: +EI		x10 6 Cpd 3	
'	4	4.169	4.169	30	0	100	1878657	4.166	0	2-		1-	
	11	17.745	17.745	30	0	100	699328	17.745	0		Ξ	c5 0700 120.0000 ≡	
	14	17.244	17.244	30	0	100	345722	17.244	0		- 1		
	9	13.181					652115	13.181	0	x10 6 Cpd 3: +EI ECC Scan 20160115B		x10 6 Cpd 3: +EI MFE Spectrum (rt: 15 91 0000	
	17	18.076	C	ompol	und Grou	p Table	122420	18.076	0	2-		1-	
	25	14.737					161048	14.735	0			65.0313 120.0000	
	28	16.729	16.729	30	0	100	125571	16.729	0			0	
	16	31.733	31.733	30	0	100	60689	31.733	0	x10 6 Cpd 3: +EI ECC Scan 20160115B		x10 6 Cpd 3: +EI MFE Spectrum (rt: 15 91 0000	
	32	13.981	13.981	30	0	100	111734	13.98	0	2-		1-	
4	34	25.653	25.653	30	0	100	91553	25.653	0			CE 0221 120.0000	
Com	ound Data	ile							~				
CE Count	Jound Deta	liis	10.00						^	x10 ⁶ Cpd 3: +EI ECC Scan 20160114B		x10 6 Cpd 3: +EI MFE Spectrum (rt: 15 91 0000	
📫 Au	韓 Automatically Show Columns 肖					2-		1-					
	File	7₽	Flags (Tgt)	⊽‡ Sc	ore (Tgt) 🛛 🕈 S	core (MFE) 🖓 🛱 Ar	ea ⊽‡ Heigh	t ∕ ⊽≠ Saturat	ed ⊽‡ N∡			CE 0744 120.0000	
	2016	01148M2H1-1.D				100	1	1293488	E			0	
	201601146M2H1-2.D			100 1310661					x10 ⁶ Cpd 3: +EI ECC Scan 20160114B x10 ⁶ Cpd 3: +EI MFE Spectr				
	20160115BM2H1-6.D		100 1340500				1359326		2-		1-		
	20160115BM2H1-5.D		1375965					1375965				CE 0970 120.0000	
	201601150M/2/11-5.D		Compound Details Table 1395388										
	20160114YJ1-1.D							1449168		x10 ⁶ Cpd 3: +EI ECC Scan 20160114B		x10 6 Cpd 3: +EI MFE Spectrum (rt: 15	
	2016	0114BM2H1-4.D	100				1	1453609		2-		1-	
	2016	0114BM2H1-3.D		100				1470937		CE 0004 120.0000			
	2	0160114YJ1-2.D		100 1478239							_	0	
						100		1500010	*	15.8 15.9 16 16. Counts vs. Acquisition Time (min)	1	40 60 80 100 120 Counts vs. Mass-to-Charge (m/z) 👻	

44 components found to be significant by one-way ANOVA 34 identified by ID Browser in NIST 14 Most were alcohols, ketones, aldehydes, esters, organic acids

grant massin	unter ID Browser 8.07.00								
e Edit View	Identification Method Configuration Help								
• (* - 🕑	Run ID Wizard 🔟 🚻 🗞 🏨 🎑 Save and Return								
ectral Differe	ence Results: Cpd 1: Benzaldehyde; C7H6O; 13.181	×	MS Peaks One: + MFE	Spectrum (rt: 13	181 min) 🔰	C 🗄 🚷 Strue	cture Viewer: Benzaldel	nyde	
+ 2 €	2 🗊 🚧		m/z +¤ Abund ⊽+¤ M	lax Abund 🕫 Z 🕫	Sat 🗢 Species	Structure	MOL Text		
10.2 Cod 1: F	enzaldehvde: C7H6O: 13.181: +ELMEE Spectrum (rt: 13.181 min)		37.1372 4906.24 4	906.24					
1-		106.0000	61 4606.07 4	606.07					
	77.0000		79.0874 4187.03 4	187.03					
	39.1000 51,1000 63.0148 . 88.9880		108.0152 3404./1 3	404./1					
0-		10	88.988 2519.5 2	519.5				/	_
10 ² Cpd 1: B	Renzaldehyde; C7H6O; 13.181: +EI MFE Spectrum (rt: 13.181 min)		00.3031 2101.35 2 04.0000 17 1	181.35				//	//
	77.0000	106.0000	102 0 1775 00 1	775.00				//	//
0-		1	43 157 1429 26 1	129.26			/	/	\}
			59.9586 1325.49 1	325.49			// \	\	/
10 ² Benzald	ehyde C7H6O + Scan NIST14.L		109.8967 1292.42 1	292.42			//	\backslash	/
1	77.0000	106.0000	64.0467 1291.17 1	291.17			//	\	_/
	51,0000		86.9746 1290.31 1	290.31		U V	,		
0 18	0000 27.0000 39.0000 63.0000 1 85.0000		83.9434 1282.34 1	282.34					
15	20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95	100 105 110 115	43.2 1222.25 1	222.25					
	Counts vs. Mass-to-Charge (m/z)		48 1177.29 1	177.29		-			
VS Spectrum F	Results Spectral Difference Results: Cpd 1: Benzaldehyde; C7H6O; 13.181				Þ				
Compound Li [.]	st								
Cod ⊽-⊐	lahel 🗸 🕁		Name 🗸	-¤ Formula ⊽-¤	Score⊽⊽-⊐ Ma	ss (DB) 🗸 🕁	m/z ⊠+⊒ Polarity ⊠+⊒	Max 7 ⊽-bi Mi	
opu .	Cod 1. Decoddoudor 07000-12.101		-		00010 1 1 110	106.042	Positive	0	0 13.181
1	Cpd 1: benzaidenyde; C/H6U; 13:161		Benzaldehy	de C/H6O	98.45				0 07.044
1	Cpd 1: benzaidenyde; C7H50; 13:181 Cpd 15: Caryophyllene; C15H24; 27:044		Benzaldehy Caryophylle	ie C/H60 ne C15H24	98.45 97.09	204.188	Positive	0	0 27.044
1 15 20	Cpd 1: Bertzaldenyde, C7460, 13:161 Cpd 15: Caryophyllene; C15H24; 27.044 Cpd 20: Hexanal; C6H12O; 8.106		Benzaldehy Caryophylle Hexar	te C7H60 ne C15H24 nal C6H12O	98.45 97.09 96.96	204.188 100.089	Positive Positive	0	0 27.044
1 15 20 7	Cpd 1: SetZaleenyde C / Hou, 13 161 Cpd 15: Caryophyllene; C15H24; 27,044 Cpd 20: Hexana; C5H20; 3106 Cpd 7: Geraniol; C10H180; 22,111		Benzaldehy Caryophylle Hexar Gerani	C7H60 ne C15H24 nal C6H120 ol C10H180	98.45 97.09 96.96 96.69	204.188 100.089 154.136	Positive Positive Positive	0	0 27.044 0 8.106 0 22.111
1 15 20 7 4	Cpd 1: Settablergine C (FMC) (3 161 Cpd 15: Caryophyllens; C15H24; 27,044 Cpd 20: Hexana; C14H120; 8:106 Cpd 7: Geraniol; C10H180; 22:111 Cpd 4: trans-beta-Ionone; C13H200; 28:378		Benzaldehy Caryophylle Hexar Geran transbetalono	te C/H60 ne C15H24 nal C6H120 ol C10H180 ne C13H200	98.45 97.09 96.96 96.69 96.64	204.188 100.089 154.136 192.151	Positive Positive Positive Positive	0 0 0 0 0	0 27.044 0 8.106 0 22.111 0 28.378
+ 1 15 20 7 4 6	Cpd 1: Settateenyde C / Hot, 73 161 Cpd 15: Caryophyllens; C15H24: 27,044 Cpd 20; Hexanai; C6H120; 8:106 Cpd 7: Geraniol; C10H180; 22:111 Cpd 4: trans - beta -lonone; C13H200; 28:378 Cpd 6: (3R,6S)-22,6-Trimethyl-6-vinyltetrahydro-2H-pyran-3-ol; C10H1802; 19:967	(3R,6S)-2,2,6-Trimeth	Benzaldehy Caryophylle Hexar Gerani transbetalono yl-6-vinyltetrahydro-2H-pyran-3-	te C7H60 ne C15H24 nal C6H120 ol C10H180 ne C13H200 ol C10H1802	98.45 97.09 96.96 96.69 96.64 96.63	204.188 100.089 154.136 192.151 170.131	Positive Positive Positive Positive Positive	0 0 0 0	0 27.044 0 8.106 0 22.111 0 28.378 0 19.967
• 1 15 20 7 4 6 9	Cpd 1: Settateenyde C / HoU, 13 161 Cpd 15: Caryophyllens; C15H24: 27.044 Cpd 20: Hexanai; C6H120; 8:106 Cpd 7: Geraniol; C10H180; 22:111 Cpd 4: trans - beta -lonone; C13H200; 28:378 Cpd 6; (3R,6S)-2.2.6-Trimethyl-6-vinyltetrahydro-2H-pyran-3-ol; C10H1802; 19.967 Cpd 9: 1.6.10-Dodecatrien-3-ol; 3.7.11-trimethyl-, (E);: C15H280; 30:303	(3R,6S)-2,2,6-Trimeth 1,6,10-Dode	Benzaldehy Caryophylle Hexar Geran trans-betalono yl-6-vinyltetrahydro-2H-pyran-3- catrien-3-ol, 3.7,11-trimethyl-, [E	de C7H60 ne C15H24 nal C6H120 ol C10H180 ne C13H200 ol C10H1802 ol C10H1802 ol C10H1802	98.45 97.09 96.96 96.69 96.64 96.63 95.18	204.188 100.089 154.136 192.151 170.131 222.198	Positive Positive Positive Positive Positive Positive	0 0 0 0 0	0 27.044 0 8.106 0 22.111 0 28.378 0 19.967 0 30.303
 1 15 20 7 4 6 9 3 	Cpd 1: Sett28/Eerybe C FM01, 03 101 Cpd 15: CaryopVillenc; C15H24, 27.044 Cpd 20: Hexanal; C6H120; 8.106 Cpd 7: Geraniol; C10H180; 22.111 Cpd 4: transbetalonone; C13H200; 28.378 Cpd 6: (3R,6S)-2.2,6-Trimethyl-6-viny/tetrahydro-2H-pyran-3-ol; C10H1802; 19.967 Cpd 9: 1.6.10-Dodecatrien-3-ol; 3.7.11-imitethyl, (E); C15H280; 30.303 Cpd 3: Phenylethyl Alcohol; C8H100; 18.076	(3R,6S)-2,2,6-Trimeth 1,6,10-Dode	Benzaldehy Caryophylle Hexar Geran trans-beta-loo yl-6-vinyltetrahydro-2H-pyran-3 catrien-3-ol, 3,7,11-trimethyl-, (E Phenylethyl Alcoh	de C/H60 ne C15H24 nal C6H120 ol C10H180 ne C13H200 ol C10H1802 c)- C15H260 ol C15H260 ol C8H100	98.45 97.09 96.96 96.69 96.64 96.63 95.18 93.98	204.188 100.089 154.136 192.151 170.131 222.198 122.073	Positive Positive Positive Positive Positive Positive Positive	0 0 0 0 0 0	0 27.044 0 8.106 0 22.111 0 28.378 0 19.967 0 30.303 0 18.076
1 15 20 7 4 6 9 3 3 13	Cpd 1: Sett2steenyde C / MoU, 13 161 Cpd 15: Caryopylleen: C15H24, 27 044 Cpd 20: Hexanai; C6H120; 8:106 Cpd 7: Geraniol; C10H180; 22:111 Cpd 4; trans. beta -lonone; C13H200; 28:378 Cpd 6; (3R,6S)-22.6-Trimethyl-6-vinyltetrahydro-2H-pyran-3-ol; C10H180; 19:967 Cpd 9: 1,6.10-Dodecartien-3-ol; 3,7.11-trimethyl-, (E); C15H260; 30:303 Cpd 3: 1,6.10-Dodecartien-3-ol; 3,7.11-trimethyl-, (E); C15H260; 30:303 Cpd 3: 1,6.10-Dodecartien-3-ol; 3,7.11-trimethyl-, (E); C15H260; 30:303 Cpd 3: 1,3.8-p-Menthetriene; C10H14; 18:540	(3R,6S)-2,2,6-Trimeth 1,6,10-Dode	Benzaldehy Caryophylle Hexax Geran trans-beta-lono yl-6-vinyltetrahydro-2H-pyran-3- catrien-3-ol. 3.7, 11-trimethyl-1, (E Phenylethyl Aloci 1.3.8-p-Menthatrie	fe C/H60 ne C15H24 lal C6H120 ol C10H180 ne C13H200 ol C10H1802 c)- C15H260 ol C8H100 ne C10H140	98.45 97.09 96.96 96.69 96.63 95.18 93.98 93.56	204.188 100.089 154.136 192.151 170.131 222.198 122.073 134.11	Positive Positive Positive Positive Positive Positive Positive Positive	0 0 0 0 0 0 0 0	0 27.044 0 8.106 0 22.111 0 28.378 0 19.967 0 30.303 0 18.076 0 18.54
1 15 20 7 4 6 9 3 13 13 14	Cpd 1: SetZaleenybe C / MoU, 13 161 Cpd 15: Caryophyllene; C15H24; 27,044 Cpd 20: Hexanai; C16H120; 31 06 Cpd 7: Geraniol; C10H180; 22,111 Cpd 4: trans: beta -Iconore; C13H200; 28 378 Cpd 6: (3R,6S)-2.2.6-Trimethyl-6-vinylterathydro-2H-pyran-3-ol; C10H180; 21,9967 Cpd 9: 1.6.10-Dodecatrien-3-ol; 37,11-trimethyl-, (E);: C15H260; 30.303 Cpd 13: 1.3.8-p-Menthatiriene; C10H14; 18:540 Cpd 14: 3-Furaldehyde; C5H402; 9.021	(3R.6S)-2.2.6-Trimeth 1.6.10-Dode	Benzaldehy Caryophylle Hexas Gerain trans-betalono yl-5-vinyltetrahydro-2H-pyran-3- catrien-3-ol, 3,7,11-trimethyl-, (£ Phenylethyl Alcol 1,3.8-p-Menthatrie 3-Furaldehy	je C/H60 ne C15H24 nal C6H120 ol C10H180 ne C13H200 ol C10H1802 ol C15H260 ol C15H260 ol C8H100 re C10H14 g C5H402	98.45 97.09 96.96 96.69 96.63 95.18 93.98 93.56 92.64	204.188 100.089 154.136 192.151 170.131 222.198 122.073 134.11 96.021	Positive Positive Positive Positive Positive Positive Positive Positive Positive	0 0 0 0 0 0 0 0 0	0 27,044 0 8,106 0 22,111 0 28,378 0 19,967 0 30,303 0 18,076 0 18,54 0 9,021

Results of Principal Components Analysis Visualizations of the Two (2D) and 3 (3D) Most Significant Components

Agilent

Dendrogram from Hierarchical Cluster Analysis

Conclusions:

- Profile of BM stock very similar to CK (nongrafted)
- HZX stock profile different from all the rest (CK and every other graft)

Effect of Rapid Aging Process on Aroma-Influencing Components

🔆 Agilent

Principal Components Visualization

Frequency (>60%) and Coefficient of Variation (<25%) filters applied

164 components found to be significant by one-way ANOVA (p<0.05, Fold-change >2x)

40 identified by ID Browser in NIST 14

Most were alcohols, ketones, aldehydes, esters, heterocyclics, alkanes

HCA of the Differently-Aged Teas

Conclusions:

- Fresh and control teas most (but not very) similar
- Rapid aged tea significantly different than that unaged group
- Natural aged tea even more different
- Rapid aged tea distinguishable (in this analysis) from natural aged tea

Venn Diagram Provides a Global View Shows Number of Components in Common and Unique

Circle "a" shows that there are 4 components found only in the control group tea. At right is a chromatogram showing only those components, along with their spectra

Yes – You Can Do That With a GC Triple Quad!

- You can move up from 1D chromatography detection to:
 - Combine multiple classical methods into one
 - Reach lower limits of detection
 - Simplify your sample prep to:
 - Save time
 - Save money
 - Minimize waste
 - Eliminate sources of variability
- You can move over from other MS techniques (HR sector, ion trap) to
 - Achieve business continuity
 - Streamline the # of different platforms/skills/training required
 - Increase the flexibility to distribute your workload
- You can obtain exquisite selectivity in unconventional ways
- You can enhance already-effective single quad methods in ways that save time, improve results and lead to greater insights
- You can do every step of a differential analysis (for product optimization, enviro/tox studies, metabolomics, etc.) on a single platform by taking advantage of the scan capabilities of a triple quad

Thanks for coming, and enjoy the rest of ASMS 2018!

tom_doherty@agilent.com

