

Poster Reprint

ASMS 2018 TP-157

GC-MS Combined with Chemometric Method for Analysis of Rapid Aged White Tea Compared with Natural Aged and Fresh White Tea

Dandan Qi¹; Wei Chen¹; <u>Chengying Ma¹</u>; Wenwen Wang²; Junxi Cao¹; Aiqing Miao¹; Shi

Pang¹

¹ Tea Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong, China

² Agilent Technologies Company Ltd., Beijing, China

Introduction

It is known that volatile aroma compounds determine the aroma profile of tea. White tea, a kind of slightly fermented tea, is considered as the minimallyprocessed form of tea with only two main processing steps: withering and drying ^[1]. After a long aging period, white tea can develop unique aroma characteristics and then is named aged white tea. It is similar with the aging process of red wine and Pu-erh tea to some extent^[2]. Solid phase micro-extraction coupled with gas chromatography-mass spectrometry (GC-MS) is proven to be an effective way to extract and analyze volatile compounds. In addition, chemometrics has advantages in extracting relevant information and discovering patterns in a large series of data. Herein, GC-MS coupled with chemometrics is applied to the analysis of the difference in volatile compounds among four treatments for white teas including fresh white tea (FWT), control group white tea (CKWT), rapid aged white tea (RAWT) and natural aged white tea (NAWT).

Method

The four white teas were analyzed by solid-phase micro-extraction and a triple quadrupole GC/MS/MS operated in MS scan mode. MassHunter Qualitative software was applied to extract the compound information and export data in compound exchanged files (.cef). Mass Profiler Professional (MPP), a software for bioinformatics data mining and chemometric analysis, was used for sample alignment and data filtering to obtain a data matrix of characteristic volatile compounds with good reproducibility. The resulting compounds were subjected to univariate analysis, principle component analysis, hierarchical clustering analysis and Venn diagram to reveal the differences among samples.

Experimental

Tea Samples

White tea samples included four different treatments, namely fresh white tea (FWT), control group white tea (CKWT), rapid aged white tea (RAWT), natural aged white tea (NAWT) and each treatment had three replicates samples. Primary white tea of all four treatments were made of the same variety "YingHong NO.9" based on the same manufacturing process. FWT was produced by sealing and storing primary white tea in a refrigerator at -20°C for 180 days. CKWT was obtained by sealing and storing primary white tea in a dry and well-ventilated storehouse for 180 days. RAWT was manufactured by storing unsealed primary white tea in an innovative rapid aging room for 180 days. NAWT was produced by sealing and storing primary white tea in a dry and well-ventilated storehouse for 12 years.

Figure 2. Four white teas with different treatments

SPME Conditions

3.5 g white tea sample was weighed in a glass vial and 10 mL boiling water was infused, followed by 10.0 μ L ethyl decanoate (0.2 μ g/ μ L in ethyl ether) as an internal standard. The vial was sealed and transferred into a 60 °C water bath for 5 min. The extraction was carried out at 60 °C for 40 min with a DVB/CAR/PDMS-50/30 μ m SPME fiber. The SPME fiber was desorbed for 4.5 min at 270 °C.

Table 1. GC/QQQ Operational Conditions.

GC and MS Conditions	Value
GC system	Agilent 7890B
Column	DB-5MS (60 m×0.32 mm×0.25 µm)
	50 °C hold 3 min , at 5 °C /min to
Oven program	250 °C hold 5 min
Carrier gas	Helium
Flow rate	1.0 mL/min
Injection mode	Manual, SPME Fiber
Injection port temperature	270 °C
Interface temperature	280 °C
MS system	Agilent 7000D
lon source	EI, 70 eV
Ion source temperature	230°C
Quadrupole temperature	150 °C
Spectral Acquisition	Full scan, 35-500 m/z

2

Figure 1. 7000D GC-MS/MS system

Data Extraction

Chromatographic peak extraction was done using the Masshunter Qualitative software by deconvolution. Cef files of each sample were obtained by Qualitative software and imported to MPP software for analysis. The total ion chromatograms of the four treatments of white tea are shown in Figure 3.

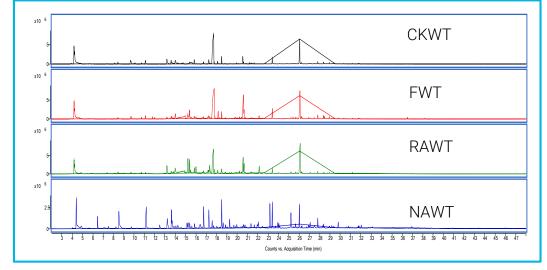
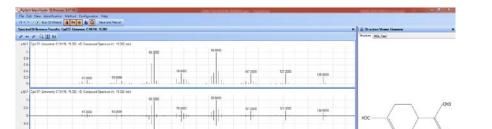



Figure 3. The total ion chromatograms of four white teas.

Data Filtering

All of the .cef files were imported into MPP software for peak alignment and data filtering, followed by statistical analysis. To qualify the repeatability and validity of these entities, frequency (frequency>60%) and coefficient of variability (CV < 25%) filters were applied to the target compounds. Next, ANOVA (p < 0.05) and fold change (FC \geq 2) were employed to pick out compounds that made significant differences on the aroma of these four white teas. Eventually, 164 entities were obtained as differential entities. By comparing mass spectra and RI with the information from NIST 14 library and standards, 40 entities were eventually identified as differential aroma compounds among the four white tea groups, including alcohols, aldehydes, ketones, esters, heterocylics and alkanes. The ID Browser function in MPP was used for compound identification by library searching (Figure 4).

Principle Component Analysis (PCA)

PCA analysis was performed based on the 40 identified compounds to investigate the effects of rapid aging technology on white tea aroma compounds in comparison with NAWT and FWT. As shown in Figure 5A, the first three principal components account for 97.96% of the total variance (38.80%, 31.02% and 28.14%, respectively). Obviously, the clear separation of RAWT from CKWT based on PC2 and PC3 (Figure 5A) indicates some significant effects of rapid aging technology on aroma compounds of white tea, and FWT, CKWT and NAWT are separated mainly based on PC1 (Figure 5B).

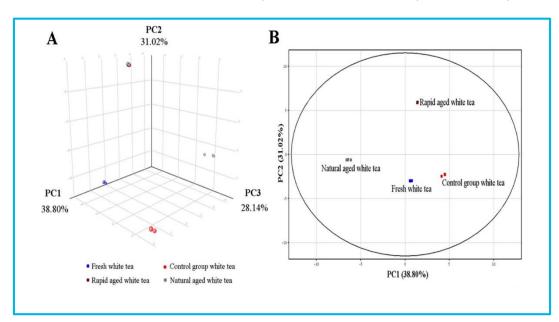


Figure 5. Principle component analysis of differential aroma compounds in four white teas. A. Scatter plots of first three principal components; B. Scatter plots of the first two principal components.

Hierarchical Clustering Analysis (HCA)

The dendrogram of HCA was applied to visualize differences of aroma compounds among four white teas based on the 40 identified compounds, as shown in Figure 6. Four white teas were divided into two groups and three white teas including FWT, CKWT and RAWT were in the first group. The first group was further divided into two groups by distance, and two white teas including FWT and CKWT were in the same group; RAWT was in an isolated group. Hence, it is shown that rapid aging technology did influence the aroma compounds by comparing RAWT with CKWT. Results of HCA were consistent with those of PCA, suggesting that the analysis methods and data processing in this study are reliable. To summarize, clear separation of these samples in PCA and uniform clustering results in HCA both suggest that GC-MS coupled with chemometrics analysis is a valid and accurate approach to discriminate different white teas produced by different aging methods.

3

	1		HN + Scan NS					1	14 2000																
	4- 12- 0-		29 (000	#1.000		83 0000			1 72 000				10	1		21.2000		136 0000							
	- A	a de	30 Spectrar Diff	1 4)	4	10 1	à d	6 6	7	Carm ve Mesee	l gl -Carge (m2)	76 1	do eda	5 590	115 1	do d	is de	the	ske ske						
- Co.						0.000		-												-					
20																									
	-				Labe	_						tiana			te tami		ini Ve N	ana Khita Wa	Passe V.C.			Handle V M		O faire V.C. I	
	Ged I W				Labe		420 24	word D	CE-1100 55			tare		24 manual in		u ⊈++ 5+ D+100	0046 V 44 M 85.22	100 (Dil) V 4 10.07		Naizyes T	6+2.V # R1 V # 1 9655	HagH V 41 555	045 V # 1 32	D Source V m I UbSearch	
	GH - 14	e			Labe					95		tare			D- 0				D Positive	Max 2 12 00 5 1 1		200 545			-
	GH - 14	20		ad 15 2 Cyclion	oritoir 1 con	c . 3 metr/-	Cpd 10 21/2 penter	0 Noranat ryb. (D. 1	C94100 55 C94100 17.7	5 8 0) nety(2)	24teamlel 6	D 0 n/ 0 D 01	04100 94100 94100	85.22 85.83 35.56	98.07 142.19 164.1	D Positive E Positive 2 Positive	Nav 2 12 00 10 1 1 1	1 2455 1 11734 1 25103	500 645 500	38	UbSearch UbSearch UbSearch	-
	GH - 14	20			oritoir 1 con	c . 3 metr/-	Cpd 10 21/2 penter	0 Noranat ryb. (D. 1	C94100 55	5 8 0		orten 1 one.		241eaptal. 6 Nora	D 0 n/ 0 D 01	DH100 BH180	80.22 85.83 85.95 85.96	98.07 NG 19 194 1 194 1	D Positive E Positive 2 Positive E Positive	1 1 1 1	1 9655 1 17.734 1 22.103 1 12.005	900 645 900 990	30	UbSearch UbSearch UbSearch	1.0
	GH - 14	20			oritoir 1 con	C . 3 methyl i Internal altr	Cpd 10 21/2 penter d. rwith/1 a 80 A Hana	0 Noranat nyl+, (C) (note: (C) (note: (C) (C94180 17.7 C94180 17.7 T114180 201 NH203 13.5 SH1002 14.9	55 56 59 56 13		orten 1 one.	antiquete,	24teased, 6 More (2 perceryl) - 6		04100 94100 94100	85.22 85.83 35.56	98.07 142.19 164.1	D Positive E Positive 2 Positive E Positive	1	1 2455 1 11734 1 25103	500 645 500	30	UbSearch UbSearch UbSearch	
	GH - 14	20			oritoir 1 con	C a. 3 methyl i teorroi an Cali	Cpd 10 21/2 genter cl. mwRyl a 80: A Hana CCT 1	0 Noranat nyli (D) (niter (D) (niter polit (CD-1100 5.5 C3+180 17.7 C11-1160 20.1 Therpoint 10.5 C4+1002 14.9	55 56 59 57 13		orten 1 one.	antiquete,	24 teasine), il Mora (2 pontenyl), i methyl mater, i A Hananton a	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	04100 94180 94180 81202 81202 81202	85 22 85 85 85 95 85 95 84 33 74 33	19.07 NG 19 194 1 194 1 194 0 194 1	D Positive E Positive 2 Positive E Positive E Positive	1 1 1 1	1 2455 1 17.736 1 21.103 1 12.035 1 14.912	500 645 500 990 990	30	UbSearch UbSearch UbSearch UbSearch UbSearch	
83838	Cont IV	20			oritoir 1 con	C s. 3 meth/10 boarcait acr Case	Cpd 10 21/2 ponter d. mwRight a 80 A Hana Cpd 111 R	0 Noranal nyle, (D) 1 mile: (D) 1 mile: (D) 1 mile: 404 0	CD-1100 5.5 C3+180 17.7 C114160 201 herood 10.5 SH1000 14.9	55 36 03 13 13		orten 1 one.	ansi) and	24 teasine), in Nors (2 poetery/b., i rustity/ rester, i 1. Heranton a Nersital Tiersital		00100 00100 00100 00100 00100 00100	80 22 85 83 85 95 84 33 94 33 74 34 84 94	98.57 NG 09 164 1 154 06 114 08 222 19	D Positive E Positive 2 Positive E Positive E Positive E Positive	1 1 1 1	1 2455 1 11754 1 25.403 1 12.805 1 12.805 1 14.914 1 14.914 1 25.805	500 645 500 990 899 509	33 51 61 44 40 70 70	UbSearch UbSearch UbSearch UbSearch UbSearch UbSearch	
83838	Cent V	0 22 35 36 36			oritoir 1 con	C s. 3 meth/G teorroit atr Gail Carl 20	Cpd 10 21/2 genter cl. methyl a 80 A Hans Cpt 11 M Cpt 111 M Hexand, 1	0 Noranat nyl+, (D)+ 1 miler, (D)+ 1 miler, (D)+ 1 miler, and 1 miler,	CSHIDO 55 CSHIDO 177 THIREO 201 HHIDO 201 SHIDO2 14 9 CSHIDO2 14 9 CSHIDE 203	25 36 37 37 38 38 38 38 38 38 38 38		orten 1 one.	ansis) acts), Hese	24 teastel. More Kore (2 postoryl) - (rettyf ester, (4 Hererore e Nerokd are, 20 dirett		04100 94180 94180 94180 94180 94280 694280 694280	8522 8535 8556 8536 8639 8630 8630 8630 8630 8630 8630 8630 8630	98.07 NG 19 194 1 194 5 194 5 194 5 194 98 194 98 202 19 194 54	D Positive E Positive E Positive E Positive E Positive E Positive E Positive	1 1 1 1	1 9655 1 17.756 1 25.165 1 12.865 1 12.865 1 14.914 1 30.365 1 25.22	500 645 500 990 899 509 509	30 51 51 44 40 40	UbSearch UbSearch UbSearch UbSearch UbSearch UbSearch UbSearch	
83838	Ged W	0 20 00 76 76 76	2		oritoir 1 con	C s. 3 meth/G teorroit atr Gail Carl 20	Cpd 10 212 ponter d. methol a BD A Hana Cpd 111 N Hexand, 3 3 Octomati	0 Noranat ny6 (C) (miler (C) (miler (C) (miler and (mole and (mole and (mole and () mole and () mole and () mole and () miler () () () () () () () () () ()	C9/100 55 C9/100 17 Th/100 21 Th/100 21 Th/100 10 5 GH/100 14 9 Th/000 25 3 C9/100 25 3 C9/100 25 3 C9/100 25 3 C9/100 25 3	25 56 03 13 13 70 70 77		orten 1 one.	ansis) acts), Hese	24 teasing More (2 pontory) - (4 Heranov a Heranov Recition cover 23 direct (Coveral, 3 direct)		04100 94180 94180 94180 94200 09420 09420 09420 09420	85.22 85.85 85.95 85.95 84.33 84.33 84.34 85.96 83.3	1927 142 (19 142 (19 144 (19 144 (19 14) (19 14) (19 14) (19 15) (19) (19) (19) (19) (19) (19) (19) (19	Positive	1 1 1 1	1 9655 1 17.736 1 22.103 1 12.805 1 12.805 1 12.805 1 12.806 1 35.20 1 35.22 1 28.477	500 645 500 980 980 999 509 500 989	33 51 61 44 40 70 70	Libberth Libberth Libberth Libberth Libberth Libberth Libberth Libberth	
83838	Ged W	0 22 25 26 26 26 26 26 26 26 26 26 26 26 26 26	2		onten 1 ge	C a. 3 methyl a Gael Cael 20 Cael 20 Cael 20	Cpd 10 21/2 genter cl. methyl a BD A Hans Cpd 111 IN Hexpre 1 2 Octownal Cpd N	0 Noranat ny6 (D) 1 miler (D) 1 mole and 0 mole and 0 m	CSHIDO 55 CSHIDO 177 THIREO 201 HHIDO 201 SHIDO2 14 9 CSHIDO2 14 9 CSHIDE 203	55 56 55 56 56 56 56 56 56 77 77 79		orden i one. 3 Han	ensi) and Hest 3	24 teastel. More Kore (2 postoryl) - (rettyf ester, (4 Hererore e Nerokd are, 20 dirett		04100 94180 94180 94260 94260 05418 94260 05418 94260 05418	8522 8535 8556 8536 8639 8630 8630 8630 8630 8630 8630 8630 8630	98.07 NG 19 194 1 194 5 194 5 194 5 194 98 194 98 202 19 194 54	3 Poeline 8 Poeline 2 Poeline 8 Poeline 8 Poeline 9 Poeline 9 Poeline 9 Poeline 9 Poeline 9 Poeline	1 1 1 1	1 9655 1 17.756 1 25.165 1 12.865 1 12.865 1 14.914 1 30.365 1 25.22	500 645 500 990 899 509 509	33 51 61 44 40 70 70	UbSearch UbSearch UbSearch UbSearch UbSearch UbSearch UbSearch	

Figure 4. ID Browser function in MPP for compound identification

Results and Discussion

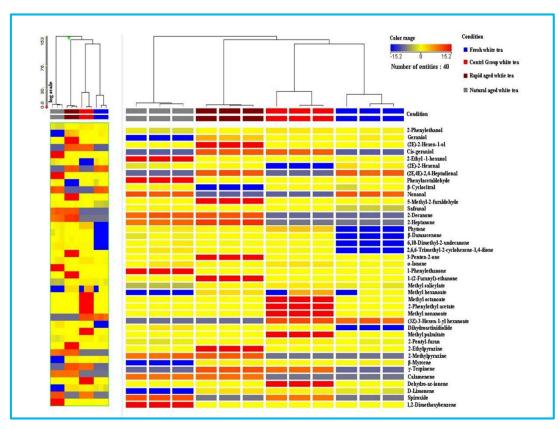
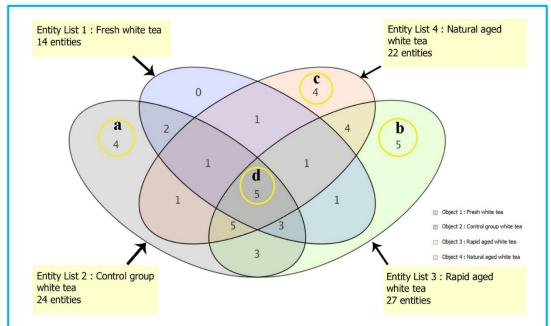



Figure 6. Hierarchical cluster analysis of four white teas.

Venn diagram

To visualize the possible logical relations among four white teas, a Venn diagram was created based on the 40 identified compounds (Figure 7). FWT and RAWT shared 10 aroma compounds; CKWT and RAWT shared 16 aroma compounds ; NAWT and RAWT shared 15 aroma compounds. In short, the Venn diagram showed significant difference in the constitution of volatile compounds among the four white teas. Circle **a** shows that there are 4 differential aroma compounds that exist only in CKWT. Figure 8 displays detailed information about these 4 differential aroma compounds. Circle **b** shows there are 5 compounds that exist only in RAWT, circle **c** that there are 4 compounds that exist only in NAWT, and circle **d** that there are 5 compounds that exist in all four white teas.

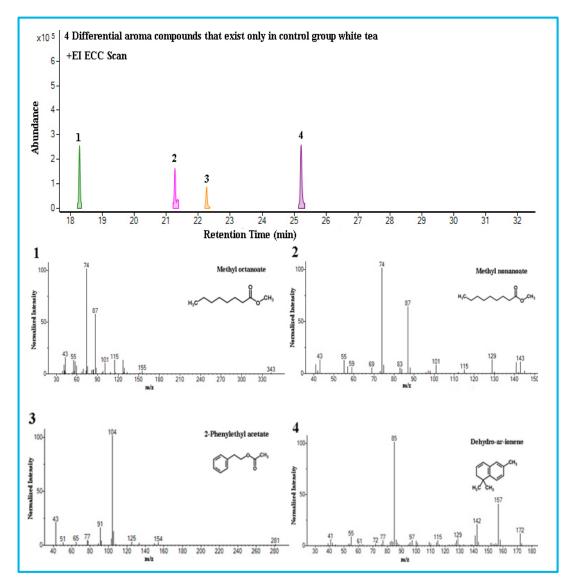


Figure 8. Four differential aroma compounds that existed only in control group white tea.

Conclusions

• A SPME and GC-MS method for profiling of four different treatment white teas has been developed.

- Clear separation was achieved among the four groups with PCA and HCA based on the 40 identified compounds via MPP.
- As rapid aging technology continues to get better at producing the effects of natural aging conditions, we speculate that it is a feasible way to produce aged white tea with similar aroma quality compared with natural aged white tea in a relatively short period.

References

¹ Dai, W., Xie, D., Lu, M., Li, P., Lv, H., Yang, C., Peng, Q.

Figure 7. Venn diagram of 40 differential aroma compounds in four white teas.

Zhu, Y., Guo, L., Zhang, Y., Tan, J., & Lin, Z. (2017). Food Research International, 96, 40-45.

² Lorenzo, C., Garde-Cerdán, T., Pedroza, M. A., Alonso, G. L., & Salinas, M. R. (2009). Food Research International, 42(9), 1281-1286.

For Research Use Only. Not for use in diagnostic procedures.

This information is subject to change without notice.

© Agilent Technologies, Inc. 2018