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Introduction

Important applications for high-resolution gas
chromatography mass spectrometer (GC/MS)
systems include untargeted screening approaches as
well as unknown compound identification. For many
classes of compounds, low energy electron ionization
(El) provides significant improvements in the relative
abundance of molecular ions as compared to
standard (70 eV) El, and thus enables enhancement in
selectivity and compound identification capability
without any down time due to changing the ion source
or additional tuning. However, there is still an
opportunity for alternative ionization sources as a
complimentary technique (i.e., chemical ionization),
combined with high resolution GC/MS, as will be
demonstrated here for selected compounds
predominantly of environmental significance.

Experimental

All experiments were performed using an Agilent
7890B GC system coupled to a high resolution 7250
GC/Q-TOF equipped with a low energy capable El
source and an interchangeable prototype Cl source.
The data were collected in both El as well as positive
(PCI) and negative (NCI) modes with methane as a
reagent gas. Selected groups of compounds included
chlorinated phenols, nitroaromatics and pesticides
among others.

Typical MS parameters are listed in Table 1.

The GC separation was done ona 30 m x 0.25 mm id
x 0.25 um film thickness HP-5MS capillary column
using He as carrier gas at 1.2 mL/min. The injector
temperature and the MS interface were set at 280°C
Methane (99.995%) was used as reagent gas. For
positive Cl the methane flow was set at 20% and for
negative Cl at 40%. For NCI, the source and the
quadrupole temperatures were set at 150°C. For PClI,
the source temperature was set at 280°C and the
quadrupole temperature at 150°C. The spectral data
were acquired at 5 Hz and the mass range was 50-
1200 m/z. 2H-Perfluoro-5,8-dimethyl-3,6,9-trioxa-
dodecane (PFDTD) was used to tune the mass
spectrometer in the Cl mode.

Data analysis was performed using Agilent
MassHunter Qualitative Analysis software version
B.08 as well as MassHunter Quantitative Analysis
software version B.09.

Experimental

lonization mode Standard El e ETergy Po%ifive NegCaltive
Electron energy, eV 70 9-17 110 70-200
Emission current, yA 5 0.3-1 150 50-130
Source temperature, °C 200-280 200 280 150
Mass range, m/z 50-1200

Spectral acquisition rate SHz

Table 1. GC/Q-TOF MS Acquisition Parameters. The
source temperature was chosen separately for each
experiment based on the compound group and
jonization mode. Emission current was optimized for
each electron energy.

LOD for both negative and positive Cl were
statistically derived based on repetitive injections of
benzophenone and octofluoronaphthalene (OFN),
respectively. In the positive Cl mode LOD was
calculated based on 10 pg/uL benzophenone
injections and was estimated to be 3.4 pg on column.
For NCI, LOD was calculated based on the injections
of 10 fg/uL and 1 fg/uL OFN and was estimated to be
2.3 and 0.5 fg on column, respectively. Examples of
EIC for OFN are shown in Figure 1.
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Figure 1. EIC for the molecular ion of OFN (1-100 fg on
column) in NCI, 271.9878 +/- 20 ppm



Results and Discussion

Low electron energy-capable El vs Positive Ci Negative Cli

The interchangeable prototype ClI source functionality was Negative Cl was found to be particularly sensitive and
evaluated with traditional positive and negative Cl checkout selective for organophosphate, organochlorine and
compounds to confirm fundamental Cl performance. Next, pyrethroid pesticides.

fragmentation patterns of different compound classes of - P

interest were compared between El (standard, 70 eV: as A | Cypermethrine 7., N Ty

well as low energy) and Cl modes (Figure 2). . ; R eC)
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Results and Discussion

Identification of cis vs trans stereoisomers of various conazoles

Stereoisomers of etaconazole, propiconazole, difeno- i g s
conazole were investigated using negative Cl. These P ~ N
compounds have two chiral centers at the 2- and 4- o8 /@(j . @j
positions on the dioxolane ring existing as two pairs of ° ) ) \CL .
diastereoisomers (cis and trans), and two pairs of ’ . :
. . . / : Etaconazole Propiconazole '
enantiomers that require chiral columns for separation. P Difenoconazole
et QY € A 0C 6 W eED %% RE k=S
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a] oo.0sssez Figure 5. NCI spectra of cis and trans etaconazole (A and
= eaoposos || | e B) and difenoconazole (C and D).
x10 & TEI Scan (rt: 13.020250 min) Frag=70.0% LCMS02 10ppm 20min 540 07.0 M M
1D trans Propiconazole The presence of the phenoxy group in the cis
= 70eVEl difenoconazole stabilizes the molecular ion somewhat,
- - | l thus leading to the formation of the fragment ion at m/z
S I RO oo e T P R 310.038943 (C4HsN3;0,Cl). For the trans conazoles, the
40 80 a0 'IOCI 120 140 160 180 200 220 240 260 2g%u3n[:;]v§.2[h1‘6354_£13%]h83r2% ?nqu)4: mos.t abundant ionS Were a.t m/z 256.004991

, . , (C,oHgN30Cl,) for eta- and propiconazole, and m/z
Figure 4. NCI spectra of cis and trans propiconazole (A 348031206 (CygHy,Na0,Cl,) for difenoconazole due to the
and B) and the El spectra of the same cis and trans  additional phenoxy ring; these ions correspond to the

stereoisomers (C and D). elimination of the side chain attached to the 1,3-dioxolane
As shown in Figure 4, NCI has a different fragmentation ring. The mass accuracy and the % abundance of the
mechanism than El. The El mechanism is via elimination molecular ions for the cis stereoisomers are given in Table
of the triazole ring (C5H,N5) to form a stable tertiary ion 3. The relative abundances of the negative molecular ions
at m/z 259.0289 (C12H13O Cl,), followed by the opening (M-) for the trans stereocisomers are below 4%.

of the 1,3-dioxolane ring and elimination of the side chaln cis trans M-

to form an abundant ion at m/z 172.9555 (C,H,;0Cl,). | MESS i —
contrast, the NCI spectra of the cis and trans isomers are epmz oo eemz jenon) o feabundance
quite different making it possible to uniquely identify Etaconazole | 126.030785 | 0.9 |  256.00515 | 0.6 | 327.0551 20
them. For the cis isomerS, the most abundant peak in the Propiconazole | 126.030726 | -1.4 256.00513 0.5 | 341.0704 29
Spectra Of eta- and propiconazole is the ion at m/z Difenoconazole | 126.030736 | -1.3 310.03894 0.2 405.0644 24
126.0309 (C,H,N50,) corresponding to the elimination of Table 3. Mass accuracy data for the cis — trans conazole
the dichloropheny! group as well as the side chain stereoisomers and the % abundances of the molecular
including the carbons 4 and 5 on the 1,3- dioxolane ring. ions of the cis stereoisomers

Conclusions

« Benefits of the 7250 GC/Q-TOF system equipped with a low energy-capable El source as well as an interchangeable
prototype Cl source were explored for targeted and untargeted analysis applications.

« Chemical ionization alone or in combination with low energy El and a high-resolution GC/Q-TOF provides new
opportunities in compound identification.
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