

Oxygenates

Analysis of trace methanol in propylene

Application Note

Energy & Fuels

Authors

Agilent Technologies, Inc.

Introduction

The Agilent Lowox adsorbent provides very high retention for oxygenated compounds. The methanol elutes after $n-C_{14}$ allowing this component to be measured at low levels in a range of hydrocarbon streams, see Application note 1363.

A typical application of trace methanol in propylene is shown here. Methanol has to be measured usually as low as 5 ppm. With the Lowox column, methanol can be quantified down to sub-ppm levels. The reproducibility of this method is within 5%.

As well as propylene, the measurement of methanol in ethylene and butadiene is possible. The high maximum temperature of 350 °C with virtually no bleed makes the Lowox column widely applicable. Other $\rm C_1$ - $\rm C_5$ oxygenated compounds can also be separated as the selectivity of the Lowox column is also very high, see Application note 1362.

Conditions

Technique : GC-wide-bore

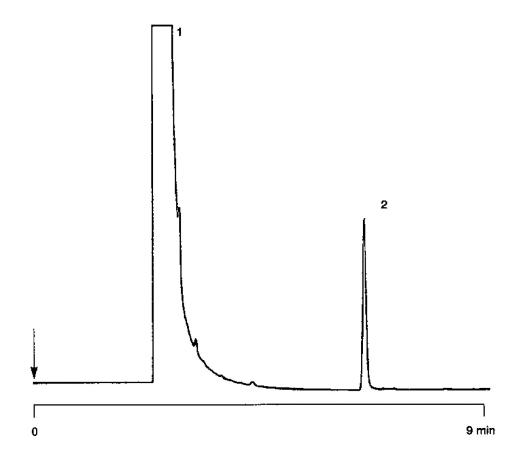
Column : Agilent Lowox, 0.53 mm fused silica PLOT

(Part no. CP8587)

Temperature : 150 °C (2 min) \rightarrow 200 °C, 10 °C/min

Carrier Gas : He, 10 kPa (0.1 bar, 1.4 psi)

Injector : Direct
Detector : FID


 $T = 200 \, ^{\circ}C$

Sample Size : 50 μ L Concentration Range : ca. 20 ppm

Peak identification

1. propylene

2. methanol

www.agilent.com/chem

This information is subject to change without notice.

© Agilent Technologies, Inc. 2011

Printed in the USA
31 October, 2011

First published prior to 11 May, 2010

A01360

