

Trace-Level Quantification of SVOCs in Water via Vacuum Assisted Sorbent Extraction (VASE) Thermal Desorption-GC-MS

Authors: Sage J. B. Dunham, Victoria L. Noad, Bailey S. Arakelian & Daniel B. Cardin Entech Instruments, Simi Valley, CA 93065

Overview

- Current analytical methods for evaluating volatile and semi volatile organic compounds (VOCs & SVOCs) in water often require large sample volumes (1 L or more), are labor intensive, and rely upon liquid-liquid extraction into organic solvents.
- Here we present a sensitive, solvent-free method termed vacuum assisted sorbent extraction (VASE) – for extraction and pre-concentration of VOCs and SVOCs in preparation for thermal desorption-GC-MS.
- In VASE, the sample (often 1 mL or less for water) is evacuated in the presence of a headspace sorbent pen (HSP), which is a vacuum-tight cartridge containing sorbent. In combination with optional heat and agitation, the static reduced pressure environment promotes compounds into the headspace for adherence to an internal sorbent bed.
- Here we demonstrate the application of VASE for extraction and quantitation of several water pollutants routinely analyzed by EPA method 8270. Compounds with boiling points ranging from 80°C to over 550°C are examined, including 2-6ring polyaromatic hydrocarbons, phenols, pesticides, chlorinated hydrocarbons, and disinfection by-products.

Sorbent Pens & Vacuum Assisted Sorbent Extraction (VASE)

Polycyclic Aromatic Hydrocarbons (PAHs)

Composite Overlay of a 10 ppb PAH Standard Mixture (TRACE Analysis)

Phenanthrene , Fluranthene 8

Analyta	BP	Olon	EPA LOQ*	Linear Range (ng/L)	Linear Range (ng/L)	D2	RSD	RSD	
Analyte	(°C)	QION	(ng/L)	TRACE Analysis	Split Analysis	R-	(Raw)	(IS Normalized)	
Naphthalene	218	128	10,000	10 - 10,000	500 - 100,000	0.998	4.4%	1.9%	
1-Methylnaphthalene	240	142	NA	5 – 10,000	500 - 100,000	0.996	5.1%	1.8%	
2-Methylnaphthalene	241	142	NA	5-10,000	50 - 100,000	0.997	6.8%	1.4%	_
Acenaphthylene	280	152	10, 000	5-10,000	50 - 100,000	0.998	5.6%	0.8%	
Acenaphthene	279	154	10, 000	50 - 10,000	50 - 100,000	0.999	5.6%	2.1%	And A long
Fluorene	298	166	10, 000	5 – 10,000	50 - 100,000	0.999	6.7%	2.9%	
Phenathrene	336	178	10, 000	50 - 10,000	500 - 100,000	0.999	4.1%	6.1%	
Anthracene	340	178	10, 000	5 – 10,000	50 - 100,000	0.999	6.8%	1.1%	
Fluranthene	384	202	10, 000	10 – 10,000	500 - 50,000	0.996	8.9%	3.8%	
Pyrene	384	202	10, 000	100 – 10,000	500 - 50,000	0.999	15%	6.8%	
Benza(a)Anthracene	437	228	10, 000	10 – 10,000	50 - 100,000	0.985	10%	3.0%	
Chrysene	448	228	10, 000	10 - 10,000	50 - 100,000	0.993	9.7%	1.3%	
Benzo(k)fluroanthene	481	252	10, 000	50 - 5,000	50 - 100,000	0.998	11%	5.7%	1 mL
Benzo(a)Pyrene	495	252	10, 000	50 - 5,000	50 - 100,000	0.997	12%	6.7%	
Indeno(1,2,3-cd)Pyrene	539	276	10, 000	5-5,000	50 - 100,000	0.991	9.9%	6.6%	
Dibenz(a,h)anthracene	524	278	10, 000	5-5,000	50 - 100,000	0.989	9.3%	8.1%	
Benzo(g,h,i)Perylene	550	276	10, 000	5 – 5,000	50 – 100,000	0.989	11%	7.9%	

Analyte	BP (°C)	Q lon	EPA LOQ (µg/L)*	Linear Range (µg/L)	R ^{2*}	
Phenol	182	94	10	1-50	0.997	A CONTRACT OF CONTRACT.
2-Chlorophenol	175	128	10	1-50	0.998	
o-Cresol	191	108	NA	1-50	0.994	
m/p-Cresol	202	107	NA	1-50	1.000	
2,4-Dimethylphenol	212	122	10	1-50	0.997	
2,4-Dichlorophenol	210	162	10	1-50	0.995	
2,6-Dichlorophenol	220	162	10	1-50	1.000	
4-Chloro-3-methylphenol	235	107	20	1-50	0.995	
2,4,6-Trichlorophenol	246	196	10	1-50	0.997	ÓН
2,4,5-Trichlorophenol	253	196	10	1-50	1.000	CI CI
2,3,4,6-Tetrachlorophenol	164	232	10	1-50	0.998	$\gamma \gamma$
Pentachlorophenol	310	266	50	1-50	0.989	
Dinoseb	332	211	20	1-50	0.994	

*Data from Table 2 Example lower limits of quantitation for semivolatile organics, EPA Method 8270D, Revision 4, February 2007.

Clean HSP After Desorption Enables Repeat Sampling Without Additional Cleanup Step

			Pe	sticides	
Analyte	BP (⁰C)	Q lon	Linear Range (µg/L)	R ^{2*}	
Aldrin	145	263	0.5-10	0.998	And a second and a s
4,4'-DDD	193	165	0.5-10	0.993	
a-BHC	288	219	0.5-10	0 999	

*Data from Table 2 Example lower limits of quantitation for semivolatile organics, EPA Method 8270D, Revision 4, February 2007 *R² refers to average R² value of n=3, 3-point calibration curves.

Overlay of 3 Replicates Calibration Curves for 2,4,6-Trichlorophenol

VASE, TD, and GC-MS Conditions

nent ite	5800 SPDU Trace Analysis Procedure 12-Mar-19
e otion	Phenols, AccuStandard
e Quantity	1 mL DI water
conditions	20 mL vial, 5% NA ₂ SO ₄ , pH 2, 70°C, 250 rpm, 8 hr
ıt	30 sec at 70ºC
otion	3 min at 300°C
out	19 min at 280ºC
lode	Splitless with 20 cc/min total flow
umn	DB-1: 5 m x 0.530 mm ID x 0.250 µm
n	DB-5MS UI: 30 m x 0.250 mm ID x 0.50 µm
;	Agilent 7890B GC; 5975C MS
eration	Full Scan 33-450, >3 scans/sec

b-BHC	288	109	0.5-10	0.999
4, 4'-DDE	336	318	0.5-10	0.998
Dieldrin	385	79	0.5-10	1.000
Heptachlor	NA	272	0.5-10	0.994
Heptachlor Epoxide	NA	353	0.5-10	0.999

*R² refers to R² value of n=1, 5-point calibration curves.

Calibration Curve for Dieldrin

VASE, TD, and GC-MS Conditions

nstrument:	5800 SPDU Trace Analysis Procedure
Run date:	1-Sep-17
Sample lescription:	Organochlorine Pesticides, AccuStandard
Sample quantity	5 mL tap water
ASE conditions	40 mL vial, 3% NA2SO4, 16 hr at 70°C
Preheat:	1 min at 260°C
Desorption:	3 min at 275ºC
Bake-out:	18 min at 260ºC
Split mode:	Splitless with 9cc/min total flow
Precolumn:	DB-1: 2m x 0.530mm ID x 0.150 µm
Column:	DB-5MS UI: 30m x 0.250mm ID x 0.50µm
GC-MS:	Agilent 7890B GC; 5977A MS
IS Operation:	Full Scan 33-450, >3 scans/sec

Chlorinated Hydrocarbons

Analyte	BP (ºC)	Q lon	EPA LOQ (µg/L)*	Linear Range (µg/L)	R ^{2**}	all for the
Pentachloroethane	162	167	10	1-50	0.998	
1,2-Dichlorobenzene	180	146	10	1-50	0.999	
1,3-Dichlorobenzene	173	146	10	1-50	0.999	
1,4-Dichlorobenzene	174	146	10	1-50	0.999	
Hexachloroethane	187	117	10	1-50	0.999	
1,2,4-Trichlorobenzene	214	180	10	1-50	0.999	
Hexachloropropene	210	213	10	1-50	0.997	
Hexachlorobutadiene	215	225	10	1-50	0.999	
1,2,4,5-Tetrachlorobenzene	245	216	10	1-50	0.999	CI
Hexachlorocyclopentadiene	239	237	10	1-50	0.990	
2-Chloronaphthalene	255	127	10	1-50	0.999	
Pentachlorobenzene	277	248	10	1-50	0.999	
Hexachlorobenzene	322	286	10	1-50	0.999	

Disinfectant By-products (DBPs)

*Data from Table 2 Example lower limits of quantitation for semivolatile organics, EPA Method 8270D, Revision 4, February 2007

*R² refers to average R² value of n=3, 3-point calibration curves

Overlay of 3 Replicates Calibration Curves for Pentachlorobenzene

Conclusions

References

• The critical steps required for capturing volatile and semivolatile compounds from water via a reduced-pressure static headspace extraction technique – vacuum assisted sorbent extraction (VASE) – are shown.

- Example applications include 2 6-ring polyaromatic hydrocarbons, phenols, pesticides, chlorinated hydrocarbons, and four classes of disinfection by-products.
- Using 1 mL of water adulterated with PAHs, LODs as low as 5 ng/L and RSDs better than 10% are obtained, demonstrating the low detection limits and exceptional repeatability of VASE.

U.S. EPA. 2014. "Method 8270E (SW-846): Semivolatile Organic Compounds by Gas Chromatography/ Mass Spectrometry (GC/MS)," Washington, DC.

The authors express their gratitude to the entire Entech staff, including the excellent engineers, machinists, software developers, assemblers, and graphic designers. We also thank Prof. Susan Richardson and her fantastic group of researchers for their help with the disinfectant biproducts work.

Acknowledgments