

Analysis of Greenhouse Gases by Gas Chromatography

AN0012

INTRODUCTION

Nitrous Oxide (N_2O), Carbon Dioxide (CO_2) and Methane (CH_4) are considered to be very powerful greenhouse gases. These gases reflect in the atmosphere, stopping the incoming and outgoing radiation that warms the Earth, thus causing the greenhouse effect. Continuously measuring the greenhouse gases gives insight into the source of the emissions, helping us fight climate change. A SCION 456 GC was custom configured specifically for the analysis for all three gases in a single matrix of atmospheric air containing water vapour.

EXPERIMENTAL

A SCION 456 GC was equipped with a gas syringe, PWOC 1041 injector, TCD, ECD and FID detectors. Two channels are used with one equipped to two detectors. After injection on the first channel, CO_2 and CH_4 are separated from the air. The TCD detects the CO_2 , configured in series with the TCD, detects the CH_4 . The ECD, on the second channel, detects the N_2O once separated from the water. The water is backflushed to vent. Figure 1 shows a schematic drawing of the greenhouse gas analyser.

Four columns are required for the analysis; all being 1/8th inch stainless steel packed columns. Two of the columns were used for the pre-separation of the compounds from the matrix and the final two for the complete separation of compounds. Table 1 shows the role of the columns used within this application.

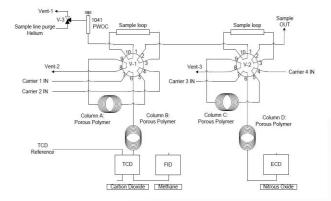


Figure 1. Schematic configuration of the greenhouse gas analyser

Table 1. Analytical requirements of the four columns

Columns	Analytical Requirements
Column A	Pre-separation of CO ₂ and CH ₄ from H ₂ O
Column B	Separates CO_2 and CH_4 from O_2/N_2
Column C	Pre-separation of N ₂ O from H ₂ O
Column D	Separation of N ₂ O from O ₂

Table 2 shows the analytical parameters for the greenhouse gas analyser.

Table 2. Analytical parameters

Conditions				
Column A	30.5psi			
Column B	17.0psi, 40mL/min			
Column C	14.0psi, 40mL/min			
Column D	29.0psi, 50mL/min			
TCD	Filament 200°C			
	Block 120°C			
FID	300°C			
ECD	Temperature 300°C			
	Cell: 415mV			
	Make up: 2mL/min			
Carrier	TCD/FID: Helium			
	ECD: Argon/Nitrogen			
Oven	50°C (isothermal)			

RESULTS

The configuration of the analyser allows three simultaneous chromatograms to be obtained. Figure 2 shows the TCD channel chromatogram where CO_2 is analysed. CH_4 is analysed on the FID channel, as shown in Figure 3. Figure 4 shows N_2O when analysed on the ECD channel.

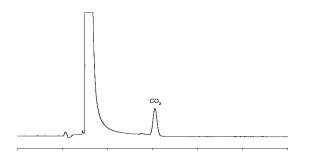


Figure 2. Separation of 1000ppm CO2 from O2 and N2.

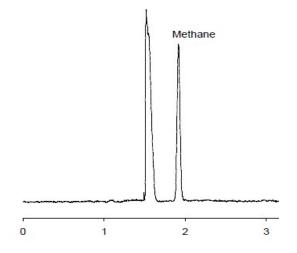


Figure 3. Separation of 5ppm CH4 from O2 and N2

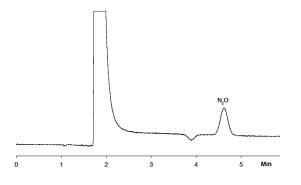


Figure 4. Separation of 1ppm N2O from bulk O2

The system suitability and repeatability were tested through a test sample being analysed with ten replicates. Table 3 details the repeatability data. The repeatability data was excellent with an RSD below 2% for all analytes.

Run	CO2	CH ₄	N ₂ O
1	13451	2947	900
2	13472	2986	913
3	13477	2928	935
4	13497	2961	929
5	13450	2933	916
6	13482	2996	922
7	13547	2974	875
8	13508	2972	901
9	13535	2967	904
10	13390	2982	904
Average	13481	2965	910
Std. Dev	45.31	22.51	17.07
RSD%	0.34	0.76	1.88

The configuration of the analyser also allows for expansion of N_2O to CFC's and SF₆. Figure 5 shows the extended ECD channel for SF₆ analysis.

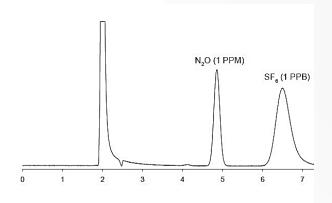


Figure 5. Separation of 1ppb SF6 from N20

CONCLUSION

A SCION 456 GC was configured as a greenhouse gas analyser for the analysis of carbon dioxide, methane and nitrous oxide in a single run. Repeatability data was excellent showing that the system is perfectly suites for the analysis of greenhouse gases. This system is highly flexible with the application range easily expanded to cover CFC's and SF₆.

SCION Instruments HQ

Livingston Business Centre, Kirkton Road South, Livingston, EH54 7FA, Scotland, UK. Tel: +44 1506 300 200 sales-eu@scioninstruments.com www.scioninstruments.com

SCION Instruments NL BV 4462, Goes, Stanleyweg 4. The Netherlands Tel: +31 113 348 926 sales-eu@scioninstruments.com www.scioninstruments.com

Table 3. Repeatability data on peak area