

DOSIMYCOTM: Integration of mycophenolic acid and its metabolite analysis in plasma using LC-MS/MS with full-automated sample preparation

Toshikazu Minohata ^{1,2}, <u>Stéphane Moreau</u>³, Fanny Dayot¹, Jean-François Hoeffler¹ ¹ ALSACHIM SAS, Illkirch, France, ² Shimadzu Corporation, Kyoto, Japan, ³ Shimadzu Europe GmbH, Duisburg, Germany

1. Introduction

Currently sample preparation for the detection of drugs in biological samples by liquid chromatography-mass spectrometry (LC-MS/MS) involves complex offline extraction methods such as solid phase extraction or liquid/liquid extraction, all of which require additional sample concentration and reconstitution in an appropriate solvent. These sample preparation methods are time-consuming, often taking 1 hour or more per sample, and are more vulnerable to variability due to errors in manual preparation. Our approach to offering a high sensitivity drug detection method and timely, automated analysis of multiple samples is to use the automated sample preparation system coupled to the detection capabilities of a high-sensitivity triple stage quadrupole mass spectrometer.

2. Method

Mycophenolic acid (MPA) and its glucuronide (MPA-G) in plasma were verified using DOSIMYCOTM (Alsachim, France). plasma sample was loaded directly into the automated sample preparation system (CLAM-2000 Shimadzu, Japan). The CLAM-2000 was programmed to perform protein precipitation using methanol followed by filtration and sample collection. The sample is then transported using an arm from the CLAM-2000 to the HPLC without human intervention for LC-MS/MS analysis.

The treated samples were trapped using a DOSIMYCO C8 column and then separated by DOSIMYCOTM C18 column at 65 °C in 1.5 min.

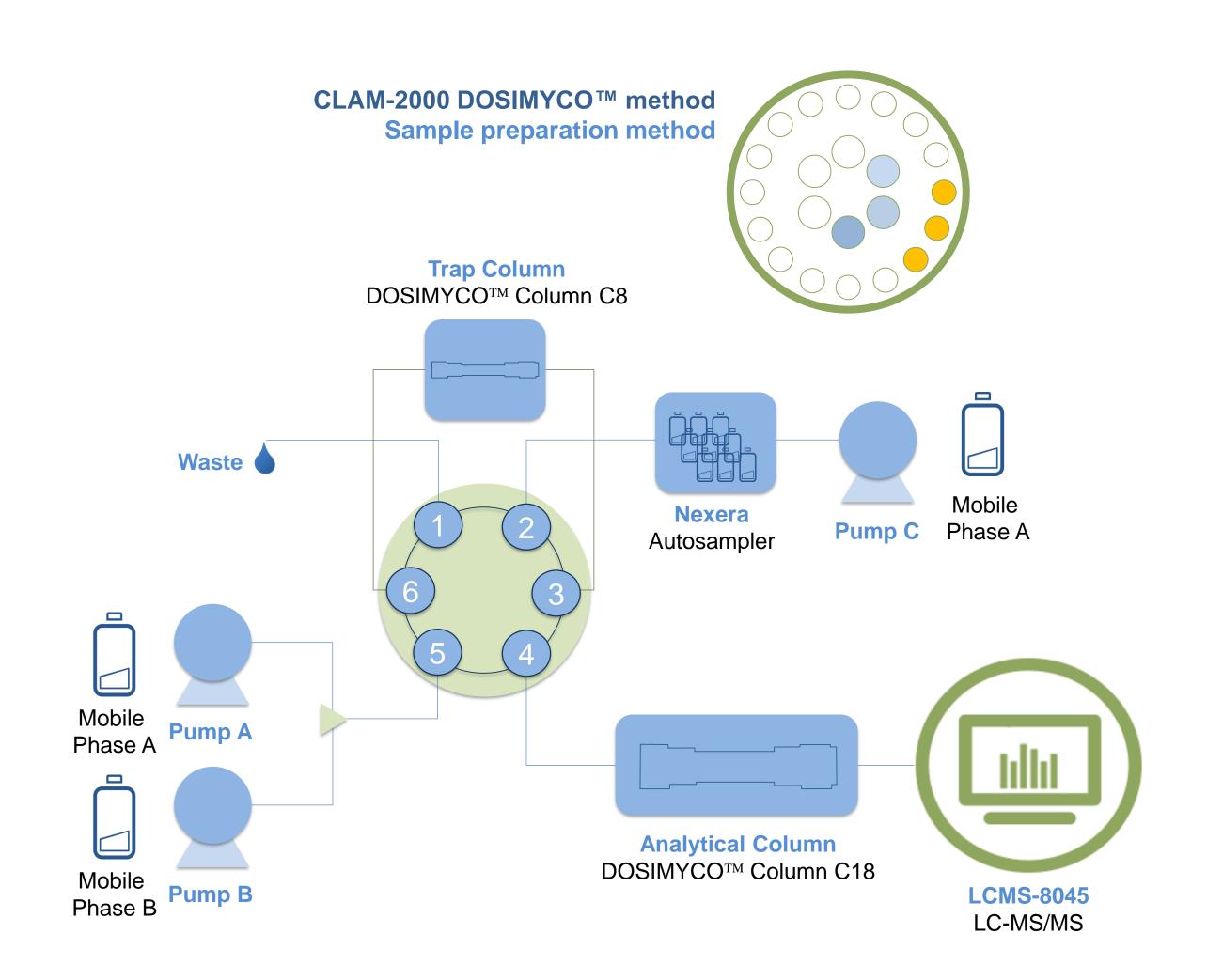


Figure 1. Schematic Representation of the CLAM-2000 LC-MS/MS Method for DOSIMYCOTM

HPLC Conditions

: DOSIMYCOTM Column C18 2,1x50 mm, 5 μm Analytical column : DOSIMYCOTM Column C8 4,6x30 mm, 5 μm Trap column

: DOSIMYCOTM Mobile Phase A Pump A : DOSIMYCOTM Mobile Phase B Pump B : DOSIMYCOTM Mobile Phase A Pump C

: (R0) DOSIMYCOTM System Cleaning Phase Rinse solution (Internal & External) (R1) DOSIMYCOTM Mobile Phase B

: 2 mL/min (for trap) Isocratic flow rate 0.8 mL/min (for analysis)

Oven temperature : 65 °C

MS Conditions LCMS-8045

: ESI Pos/Neg Ionization : 100 °C DL temp. : 200 °C Heat Block temp. : 200 °C Interface temp. Nebulizer gas flow : 3 L/min Drying gas flow : 10 L/min : 10 L/min Heating gas flow

Time program:

. •		
Time (min)	event	
0.25	Pump C Flow	2 mL/min
0.26	Pump C Flow	0.02 mL/min
0.25	Valve Position	1
1	Pump B conc.	60
1.01	Pump B conc.	100
1.5	Pump B conc.	100
1.51	Pump B conc.	60
1.51	Valve Position	0

MRM transition:

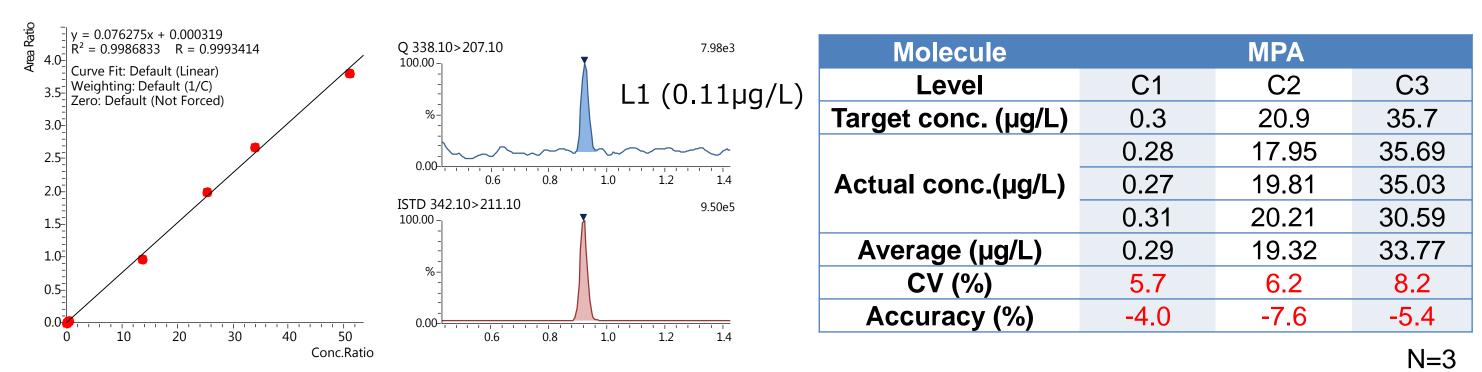
	ion	polarity	target ion	reference ion
MPA	+NH4	pos	338.10>207.10	338.10>159.10
	+H (reference)	pos	321.10>207.10	321.10>159.10
MPA-G	+NH4	pos	514.10>207.10	514.10>159.10
	-H (reference)	neg	495.10>319.10	495.10>175.05
	ion	polarity	target ion	reference ion
[13C, 2H3] MPA	+NH4	pos	342.10>211.10	342.10>159.10
	+H (reference)	pos	325.10>211.10	325.10>159.10
[13C, 2H3] MPA-G	+NH4	pos	518.10>211.10	518.10>159.10
	-H (reference)	neg	499.10>323.10	499.10>175.05

Samples preparation

for manual handling

- 1.25 µL of samples/calibrators in 1.5 mL microtube
- 2. Add 25 µL of Internal Standard
- 3. Add 450 µL of Extraction buffer
- 4. Shake for 1 min
- 5. Centrifuge at 15,000 g during 7 min
- 6. Transfer 200 µL of supernatant to vial

Samples preparation


for CLAM-2000

- 1. Take 20 μL of IPA/H₂O(75/25) to filtration vial
- 2. Add 10 µL of samples/calibrators
- 3. Add 180 µL of Extraction buffer
- 4. Add 10 µL of Internal Standard
- 5. Shake for 1 min at 1,900 rpm
- 6. Filtrate for 1min

3. Result and discussion

We evaluated this system using calibrator and control plasma spiked with mycophenolic acid and its glucuronide in DOSIMYCOTM and carried out concurrent analysis over a range of concentrations in 0.1 to 50 mg/L for mycophenolic acid and 1 to 250 mg/L for its glucuronide. The calibration curves that were generated had linear regression values of r² >0.99 for each curve. The reproducibility (N=3) at 3 concentrations for control was excellent.

Mycophenolic acid

Mycophenolic acid β-D-glucuronide

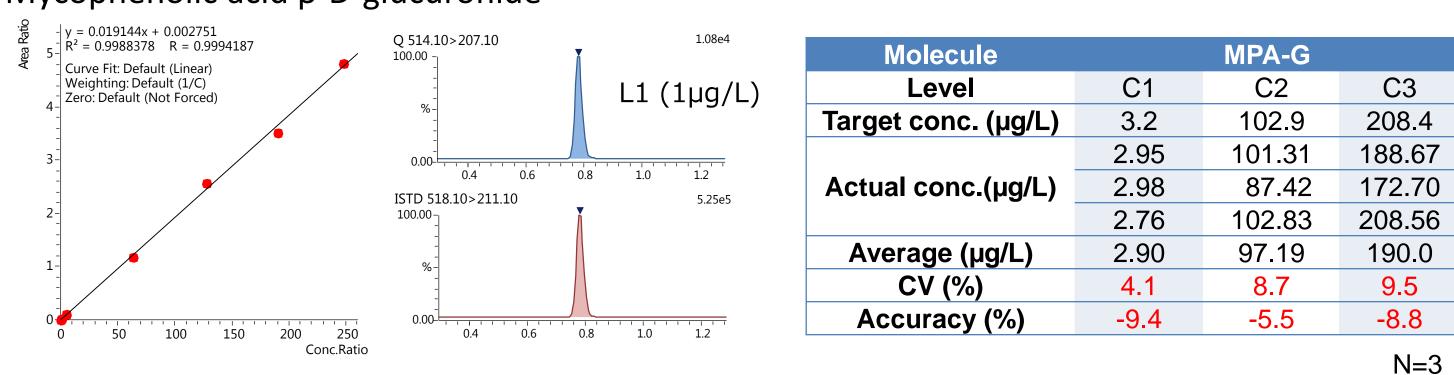


Figure 2. Calibration Curves, MRM Chromatograms and Summary of Mycophenolic acid and its glucuronide

Sample preparation and LC-MS/MS analysis can be performed in parallel to accelerate throughput using CLAM-2000.

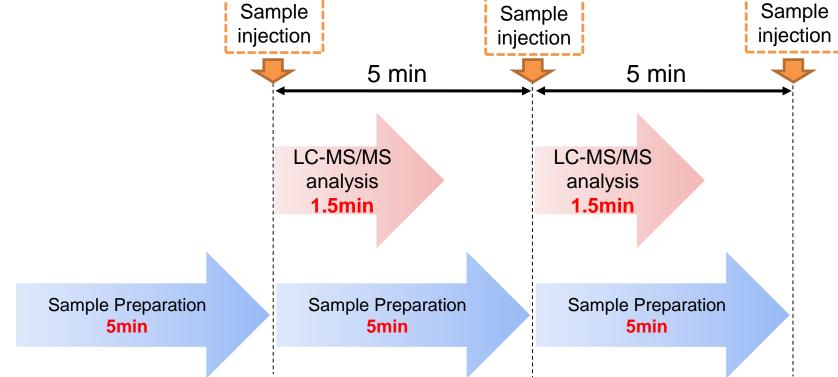


Figure 3. Analytical Flow with Parallel Processing

4. Conclusion

We completed mycophenolic acid analysis using the automated sample preparation system coupled to LC-MS/MS. The results show the capability of the system for large sample set analyses with improved accuracy and precision by eliminating human error associated with manual sample handling.

Disclaimer: The products and applications in this presentation are intended for Research Use Only (RUO). Not for use in diagnostic procedures. Not available in China.