Maximizing Performance Through GPC Column Selection: Then and Now

Jean Lane Application Engineer LC columns and Consumables Technical Support June 7, 2022

June 7, 2022 Selection

Maximizing Performance Through GPC Column Selection DE00730721

GPC/SEC Separation Mechanism

- A GPC/SEC column is packed with porous beads of controlled porosity and particle size
- A sample is prepared as a dilute solution in the eluent and injected into the system
- Large molecules are not able to permeate all of the pores and have a shorter residence time in the column
- Small molecules permeate deep into the porous matrix and have a long residence time in the column
- Sample molecules are separated according to molecular size, eluting the largest first and smallest last

Packings for GPC/SEC Columns: What are GPC Columns Made Of?

- Silica packings
 - Mechanically stronger
 - Exhibit enthalpic properties due to presence of silanols
 - Typically have lower pore volumes
- Polymeric packings
 - High pore volume and vendor specific differences in mechanical stability
 - Due to polarity of stationary phase, observed interactions are reduced

Column Type: Individual Pore Size

- All particles have the same pore size
- Good separation, but narrow range of molecular weight
- Very nonlinear curve; linear only over a narrow molecular weight range
- Oldest technology, but useful for separating very small and very large compounds
- Wider molecular weight range only possible by combining different columns in series, but need to select carefully to avoid column 'mismatch'

PLgel individual pore size calibration plots

Individual Pore Size

DE00730721

PLgel 5 µm, 10E4 Å

Mol wt range: 60 K – 400 K

Good resolution but only over a limited mol wt range

Linear range of the column limited

Increasing the Resolving Range

- Individual columns can be coupled in series
 - PLgel and PL aquagel-OH
- Need linear calibration ranges to complement without overlap

Wrongly Coupled Columns

- Mol wt gap between linear ranges
- Changes retention and gives unusual peak shapes

Combination of Individual Pore Size Columns

Maximizing Performance Through GPC Column Selection June 7, 2022

8

DE00730721

Conventional GPC Using a Standard GPC System Individual Pore Columns

Conventional GPC Using a Standard GPC System Individual Pore Columns

Pain Points and Common Challenges for SEC

- Molecular weight ranges for the columns are limited
- Use of multiple columns in series can lead to mismatch/dislocations
- Need more resolution or it is insufficient
- Long analysis times reduce sample throughput
- Long analysis times increase solvent use and costs
- Nonspecific interactions contribute to loss of sample and lead to inconsistent results and rework
- Need consistent and reproducible results

Making Your GPC/SEC Column Selection Key questions to ask

- What polymer are you analysing?
- What solvent is your polymer soluble in?
- What is the expected molecular weight range of your polymer?
- What is the requirement for your analysis or what would you like to improve about your existing GPC/SEC separation?
 - Resolution is important
 - Reproducibility of sample chromatography and results
 - Speed of analysis and/or sample throughput is something to improve on

Considerations for Column Selection

- Column selection depends on:
 - Molecular weight
 - Polydispersity
 - Presence of additives
 - Solvents required
 - Temperature required
- Helpful to know the properties of the sample
- Necessary to understand the properties of the columns

Column Types: MIXED

- Individual pore size particles are mixed together/blended to make a linear curve
- Very wide ranges possible, but only a small amount of separation of each mol wt
- Linear curve makes chromatogram easy to read and analyze
- Most popular technology; well established and widely used
- Columns in series of same type are still linear

PLgel MIXED calibration plots

Comparison of Columns for Extend Mol Wt Range Individual pore versus MIXED

Comparison of Columns for Extend Mol Wt Range Individual pore versus MIXED for our sample

Column Types: Multipore Particle

- Newest, fastest growing technology
- Each particle has multiple pore sizes
- Increased pore volume
- Highest resolution and efficiency
- Best performance for most common mol wt ranges

Individual Pore versus MultiPorous Particle

Column Selection and Importance of Solvent Choice Criteria for solvent selection

- The factor that principally controls which type of column is selected for a GPC analysis is the solvent
- Many polymer dissolve in only very limited numbers of solvents
- The columns used must be compatible with the solvent of choice
- Solvent choice permits adequate detection
- Most importantly, the size exclusion mechanism must be maintained

Column Selection – Solvent

• Solvent determination is very simple

"What does the polymer dissolve in?"

- Organic PLgel Individual/PLgel MIXED or PlusPore
- Aqueous PL aquagel-OH
- Polar organic or organic/aqueous mixtures PolarGel
- Aggressive solvents/temperatures PLgel or specialist columns

Solvents for Organic and Aqueous SEC

	Ag	ilent		
In	in	ity	Lab	

Solvent polarity	Solvent
6.0	Perfluoroalkane
7.3	Hexane
8.2	Cyclohexane
8.9	Toluene
9.1	Ethyl acetate
9.1	Tetrahydrofuran (THF)
9.3	Chloroform
9.3	Methyl ethyl ketone (MEK)
9.7	Dichloromethane
9.8	Dichloroethene
9.9	Acetone
10.0	0-Dichlorobenzene (o-DCB)
10.0	Trichlorobenzene (TCB)
10.2	m-Cresol
10.2	o-Chlorophenol (o-CP)
10.7	Pyridine
10.8	Dimethyl acetamide (DMAc)
11.3	n-Methyl pyrolidone (NMP)
12.0	Dimethyl sulfoxide (DMSO)
12.1	Dimethyl formamide (DMF)

Column Selection - Solvent

Infinity Lab

• What solvent is your sample soluble in?

Туре	Typical Solvents
Organic	 THF Chloroform Toluene TCB
Mixed or Polar Organic	THF/waterDMFNMP
Aqueous	WaterBuffer in waterWater/methanol (up to 50%)

Additives can be employed:

- Minimize non-size exclusion interactions between the sample and the column
- Stabilize the solution of the polymer (ionic aggregation)

Polymer to Solvent Reference Table

Successful Solvent Choice

Tips for use of additives:

- Addition of salts to aqueous and polar organic solutions is the preferred method to eliminate polar interactions by electrostatic screening. Salts should be flushed from the system after analysis.
- For water-soluble polymers, interactions can also be minimized by addition of an organic solvent, such as methanol
- Lewis bases such as polyamines and polyamides may interact with polymeric media, but this can be eliminated by the addition of an amine to the mobile phase, such as triethylamine (TEA)

Polar interactions in the lower chromatogram are eliminated with 5% methanol addition to the eluent

Eluent Modification in Organic GPC

Hostavin N30

Polymeric UV stabilizer containing secondary amine groups

Column: 2 x PLgel 3µm MIXED-E 7.5 x 300 mm p/n PL1110-6300 Flow Rate: 1.0 mL/min Detector: ELSD

Improve Peak Shapes of Polar Compounds PolarGel GPC columns

What Are These Regions on a Chromatogram?

Consider the Column's Mol Wt Range

- The example chromatogram and calibration curve illustrate how different size molecules elute from the column
- Choose a column that allows you to work in the linear portion of the calibration curve.

Considerations for Column Selection

• What is the expected molecular weight range of your polymer sample?

Mol wt	Mol wt range (g/mol or Da)
High	Up to several millions
Intermediate	Up to hundreds of thousands
Low	Up to tens of thousands
Very Low	A few thousand

GPC/SEC Columns – Making a Choice

Infinity Lab

Questions to consider:

- What mol wt range is needed for the column?
- Organic or Aqueous eluents being used
- What are your key requirements for your GPC/SEC analysis?
 - Resolution is important
 - Reproducibility of sample chromatography and results
 - Speed of analysis and/or sample throughput is something to improve on

Agilent GPC Columns For organic soluble polymers

Agilent SEC Columns For aqueous soluble synthetic and natural polymers

Molecular weight

CI0126B-June 7, 2022

DE00730721

GPC Column Selection How many GPC/SEC columns to use

More than one column typically used More columns = improved resolution

- The greater the particle size of the media in the column (which is dependent on the expected molecular weight of the samples), the lower the resolution. More columns will be required to maintain the quality of the results.
- For higher molecular weight samples, larger particles are necessary to reduce the danger of shear degradation of samples.

Particle Size	Number of Columns	
20 µm	4	
13 µm	3	
10 µm	3	
8 µm	3	
5 µm	2	
3 µm	2	

GPC Column Selection Ways to improve resolution

Running two columns in series using different pore sizes

• Extends the resolving range and enables analysis of multiple attributes in one run

Running two columns in series using the same pore size/same type

• Increasing pore volume increases the resolution

Use a packing with a smaller particle size

• Decreasing the particle size increases column efficiency

Resolution in GPC

Column length and particle size

GPC Column Selection Effect of column length on resolution

Columns: 1 x PLgel 10 μm MIXED-B 7.5 x 300 mm p/n PL1110-6100 3 x PLgel 10 μm MIXED-B 7.5 x 300 mm p/n PL1110-6100 Eluent: THF Flow rate: 1 mL/min Detector: RI

> Polystyrene standards Easical

- 1. 3,040,000
- 2. 330,000
- 3. 66,000
- 4. 9200
- 5. 580

Elution Volume (ml)

Column in Series to Extend Resolving Range

Effect of Column Selection: Pore size

* Samples run using PLgel individual pore size columns

Importance of Pore Volume

Polystyrene standards 2xOligoPore, 300x7.5mm (PL1113-6520) Columns: Eluent: THF 1.0ml/min Flow Rate: 1,270 Detector: RI 580 5 min 20

- With some columns it is possible to calibrate the column using the oligomers
- The molecular weights of the initiator fragment and the repeat unit of the polymer must be known

Improve Run time and Resolution PlusPore columns

Column Selection Fast GPC

Improving speed for analysis without sacrificing resolution Comparison for conventional columns versus columns for fast GPC:

Throughput is increased by more than 3x

Columns	Peak 2 retention time (min)	Run time (min)
4 x conventional 7.5 x 300 mm	28.46	50
3 x PL Rapide L 10 x 100 mm	7.41	15
2 x ResiPore 4.6 x 250 mm	6.66	15

Without sacrificing separation quality

Columns	Resolution (Rs)	Selectivity (a)	Area %	Height %
4 x conventional 7.5 x 300 mm	1.2	1.05	8	7
3 x PL Rapide L 10 x 100 mm	1.1	1.06	7	7
2 x ResiPore 4.6 x 250 mm	1.1	1.05	8	8

MW Range: up to 3,300 (g/mol) Nominal Particle Size: 6 μm Typical Efficiency: >55,000 p/m

- Column: 2 x OligoPore, 4.6 x 250 mm, p/n PL1113-6520
- Flow Rate: 0.3, 0.6, 1.2 ml/min
- Sample: Polystyrene 580

Different flow rates overlaid to show that faster doesn't sacrifice resolution. The chromatograms have been normalized to better illustrate the differences.

Column Selection Fast GPC

MesoPore Columns

Conditions

Column:	2 x MesoPore, 4.6 x 250 mm (PL1513-5325)
Sample:	Epoxy resin
Eluent:	THF
Flow rate:	0.35 and 1.2 mL/min
lnj vol:	4 μL
System:	1260 Infinity GPC/SEC System, UV, 254 nm

Easy Method Transfer from Standard to rapid GPC on MesoPore 250x4.6mm GPC columns

MW Range: up to 25,000 (g/mol)

Nominal Particle Size: 3 µm

Typical Efficiency: >80,000 p/m

Rapide Columns for Fast Trend Analysis

Column: PL Rapide L, 10 x 100 mm Sample: Epoxy resin Eluent: THF Flow rate: as noted Detector: UV, 254 nm

Reducing Dead Volume

Infinity Lab

It is important to:

- Use tubing with an internal diameter that is as narrow as possible
- Keep tubing connections short
- Use proper fittings for connections

Proper Connections

- Problems with improper connections
 - Source of leaks
 - Mistaken for chromatography issues
- Making connections can vary with skill/technique
- Different manufacturers supply different types of fittings

Potential Fittings Issues

System Detection

Peak shape and resolution improvement

1290 Infinity II **GPC/SEC** System

Polypore columns are a multiporous structure which give extremely linear

🔆 Agilent

Aailent

calibrations.

System Detection Choice of solvent and detection

3 x PLgel, 5 μm, MIXED-D		
7.5 x 300 mm, p/n PL1110-6504		
Toluene or THF		
1.0 mL/min		
Polysiloxane, 0.2% w/v		
100 µL		

Application note publication number: 5990-7897EN

Extending Experimental Data Molecular weight sensitive detectors for GPC

Detector	Measures	Molecular Weight	Molecular Size	Information
Refractive Index Detector Only	Sample Concentration	Relative to the standards used for column calibration	No	Concentration
Viscometry	Intrinsic Viscosity	More accurate from the Universal Calibration	Yes, hydrodynamic radius (Rh).	Branching, density, aggregation.
Light Scattering	Scattered light intensity	Absolute determination	Yes, Radius of Gyration (Rg) directly.	Absolute Molecular Weight, size and structure.
Triple Detection	Concentration, viscosity, scattered light	Absolute determination	Yes, direct measure of Rg and Rh.	The ultimate configuration for comprehensive polymer characterization

Agilent GPC/SEC Columns

Organic solvents

PLgel

- PLgel MIXED
- PLgel MiniMIX
- PLgel MIXED-LS
- PLgel [Pore Size]
- PLgel Olexis

PL HFIPgel

PL Rapide

EnviroPrep

<u>Organic solvents</u> PlusPore

- PolyPore
- ResiPore
- MesoPore
- OligoPore

Polar solvents PolarGel

Aqueous solvents PL Aquagel-OH MIXED PL Aquagel OH PL Rapide Aqua

GPC/SEC Columns and Supplies Resources

- Organic GPC Columns catalog: Organic GPC Columns
- Aqueous & Polar GPC/SEC Columns catalog: <u>Aqueous & Polar GPC/SEC Columns</u>
- GPC/SEC Polymer Standards catalog: <u>GPC/SEC Polymer Standards</u>
- GPC/SEC User Guide: <u>GPC/SEC column user guide</u>
- Polymer to Solvent Reference Table: <u>Polymer to Solvent Reference Table</u>
- GPC Troubleshooting poster: <u>GPC Troubleshooting Guide</u>
- InfinityLab Supplies catalog: InfinityLab LC Supplies (agilent.com)
- Consumables Community: <u>Agilent Collection of Columns, Supplies, and Standards Resources -</u> <u>Consumables - Agilent Community</u>
- App finder: Application Finder | Agilent
- Agilent University: Agilent University
- YouTube: <u>Agilent Channel</u>
- Your local product specialists
- Agilent Peak Tales podcasts: peaktales.libsyn.com
- Webinars, upcoming and recorded: LC & LC/MS Column Webinars | Agilent

DE00730721

Contact Agilent Chemistries and Supplies Technical Support

Available in the U.S. and Canada, 8-5 all time zones

1-800-227-9770 option 3, option 3:
Option 1 for GC and GC/MS columns and supplies
Option 2 for LC and LC/MS columns and supplies
Option 3 for sample preparation, filtration, and QuEChERS
Option 4 for spectroscopy supplies
Option 5 for chemical standards
Option 6 for Prozyme products

gc-column-support@agilent.com lc-column-support@agilent.com spp-support@agilent.com spectro-supplies-support@agilent.com chem-standards-support@agilent.com pzi.info@agilent.com

Thank you for attending

Any questions?

Agilent InfinityLab

