Catecholamine Analysis with Star 9080 EC Detector

Fred Klink Varian Chromatography Systems

Key Words: Star 9080, Catecholamines, Clinical, Biomedical

Standard Separation

Analysis of 30 nmol/L noradrenaline (1), adrenaline (2) and dopamine (3).

Detector Varian Star 9080 Amperometric Electrochemical Detector

Column ODS, 4 μ , 150 x 4.6 mm

Flow rate 1.0 mL/min

- - Sample 20 µL injection catecholamine standards, 30 nmol/L
- **Temperature** 30 °C
 - Flowcell 2.74 mm Glassy Carbon working electrode
 - REF Ag/AgCl reference electrode filled with saturated KCl/AgCl
 - E-cell 800 mV (vs. Ag/AgCl)
 - I-cell 3 nA (background current)

NOTICE: This document contains references to Varian. Please note that Varian, Inc. is now part of Agilent Technologies. For more information, go to www.agilent.com/chem.

\mathbf{X}	Agilent Technologies	
--------------	----------------------	--

A typical S/N ratio for norepinephrine measured with a VT-03 glassy carbon flowcell is 53000. The amount injected is 20 pmole (1.0 μmol/L). The concentration detection limit based on three times the noise (pp) is 56 pmol/l.

Calculations:

S / N ratio = $\frac{\text{signal (nA)}}{\text{noise pp (nA)}}$ = 53000 (1.0 μ mol/L, 20 μ L)

$$c_{LOD} = \frac{3 \text{ x noise pp}}{\text{signal}} \quad c_A = 56 \text{ pmol/L}$$

Minimum detectable amount: 56 pmol/L x 20 μ L= 1.12 fmol (10⁻¹⁵ mol)

Analysis of rat hyppocampal dialysate 50 μL injection. Concentrations (amounts) are 185 nM (5.5 pmol) 5-hydroxyindole acetic acid and 154 pM (4.6 fmol) 5-hydroxytryptamine (serotonin).

Analysis of rat preoptic area dialysate 50 μ L injection. Concentrations (amounts) are 10 nM (318 fmol) MHPG and 0.36 nM (11 fmol) Noradrenaline.

These data represent typical results. For further information, contact your local Varian Sales Office.