

PO-CON1214E

Analysis Method of Polybrominated Diphenyl Ethers Using GC-MS and GC-MS/MS Coupled With an Automated Identification and Quantitation System with a Database

IMSC 2012 PTh-060

Katsuhiro Nakagawa, Tomoaki Kondo, Kouki Tanaka, Yuki Sakamoto, Shuichi Kawana, Haruhiko Miyagawa Shimadzu Co., Kyoto, Japan

Introduction

There are 209 isomers of polybrominated diphenyl ethers (PBDE), each with varying levels of toxicity and detection frequency in environmental samples. A common method for analysis of PBDEs requires expensive C13-labeled standards and a gas chromatograph coupled to a high resolution magnetic sector mass spectrometer (GC-HRMS). The operation of GC-HRMS instruments requires a highly skilled analyst, and maintenance can be time-consuming and labor-intensive. This poses a critical situation, especially for environmental laboratories in developing countries. Kadokami et al. [1] developed a novel automated identification and semi-quantitation database (AIQS-DB) which allows automatic identification and semi-quantitation of 1,000 pollutants without requiring analysis of standards. The database includes retention indices, mass spectra, and internal calibration curves for 1,000 environmental pollutants. The pollutants are

identified using the mass spectrum and retention time (RT) predicted by retention index. Semi-guantitation is performed using internal calibration curve. This poster illustrates a method for analysis of PBDE using the database. To minimize the use of costly internal standards, the AIQS-DB was applied to PBDE with lower toxicity and detection frequency, while the conventional method (isotope dilution) was applied to PBDEs with a higher toxicity and detection frequency to obtain precise quantitation results. Single quadrupole GC-MS could be used for some samples, however the sediment samples had complex, interfering co-extractants which hindered detection of the PBDE. Samples with interfering matrices were analyzed on a triple guadrupole GC-MS/MS. Using the GC-MS/MS, the PBDE were successfully identified, and analysis results corresponded to concentrations of PBDE determined by the conventional HR-GCMS method.

1. Novel gas chromatography-mass spectrometry database for automatic identification and quantification of micropollutants, Kiwao Kadokami, Kyoko Tanada, Katsuyuki Taneda, Katsuhiro Nakagawa, J. Chromatogr A, 1089 pp 219-226, 2005.

Results Evaluation of AIQS-DB

Accuracy of predicated RT was evaluated using analytical standards with three different GC-MS instruments, and a real sample.

Table 1 Accuracy of prediction RT for standards on three different instruments (A, B, and C)

Δ RT=predicted - measured RT							
Compound -							
Compound -	А	С					
Tri/ BDE-028	0.04	-0.07	-0.03				
Tetra/ BDE-47	0.05	-0.06	-0.02				
Penta/ BDE-100	0.08	-0.03	0.01				
Penta/ BDE-99	0.07	-0.04	0.00				
Hexa/ BDE-154	0.08	-0.03	0.00				
Hexa/ BDE-153	0.08	-0.02	0.01				
Hepta/ BDE-183	0.09	-0.03	0.00				
Deca/ BDE-209	0.08	-0.04	-0.01				

Semi-quantitation results for sediment sample spiked with PBDEs at 50 ng/mL.

Compounds	Conc.
Mono/ BDE-001	64.2
Di/ BDE-010	64.0
Tri/ BDE-028	68.5
Tetra/ BDE-51	62.9
Penta/ BDE-105	53.7
Hexa/ BDE-140	60.7
Hepta/ BDE-190	169.9
	ng/mL

Table 2 Accuracy of prediction RT for real sample

Compounds	$\Delta RT [min]$
Tri/ BDE-028L	0.09
Mono/ BDE-001	0.09
Di/ BDE-010	0.08
Tri/ BDE-028	0.08
Tetra/ BDE-47L	0.12
Tetra/ BDE-51	0.09
Penta/ BDE-99L	0.14
Penta/ BDE-105	0.13
Hexa/ BDE-153L	0.03
Hexa/ BDE-140	0.08
Hepta/ BDE-183L	0.07
Hepta/ BDE-190	0.11

• The maximum difference in RT was 0.14 min.

- Semi-quantitation results were from 68.5 to 53.7 ng/mL, except hepta/ PBDE-190.
- PBDE-190 co-eluted with an interference and could not be accurately quantified

Experimental

Target compounds

Co	onventional meth	od	AIC	QS-DB						
ID	Compound	IS ¹³ C ₁₂	ID	Compound	ID	Compound	ID	Compound	ID	Compound
1	Tri/ BDE-028	Tri/ BDE-028L	9	Mono/ BDE-001	19	Tri/ BDE-017	29	Tetra/ BDE-066	39	Penta/ BDE-120
2	Tetra/ BDE-47	Tetra/ BDE-47L	10	Mono/ BDE-002	20	Tri/ BDE-025	30	Tetra/ BDE-071	40	Penta/ BDE-126
3	Penta/ BDE-99	Penta/ BDE-99L	11	Mono/ BDE-003	21	Tri/ BDE-028	31	Tetra/ BDE-075	41	Hexa/ BDE-128
4	Penta/ BDE-100	Penta/ BDE-100L	12	Di/ BDE-007	22	Tri/ BDE-030	32	Tetra/ BDE-077	42	Hexa/ BDE-138
5	Hexa/ BDE-153	Hexa/ BDE-153L	13	Di/ BDE-008	23	Tri/ BDE-032	33	Tetra/ BDE-079	43	Hexa/ BDE-140
6	Hexa/ BDE-154	Hexa/ BDE-154L	14	Di/ BDE-010	24	Tri/ BDE-033	34	Penta/ BDE-085	44	Hexa/ BDE-155
7	Hepta/ BDF-183	Hepta/ BDF-1831	15	Di/ BDE-011	25	Tri/ BDE-035	35	Penta/ BDE-105	45	Hexa/ BDE-156
8	Deca/ BDF-209	Deca/ BDF-2091	16	Di/ BDE-012	26	Tri/ BDE-037	36	Penta/ BDE-116	46	Hepta/ BDE-181
0		Decca, DDE 2001	17	Di/ BDE-013	27	Tetra/ BDE-049	37	Penta/ BDE-118	47	Hepta/ BDE-190
			18	Di/ BDF-015	28	Tetra/ BDF-051	38	Penta/ BDF-119		

Sample preparation

GC-MS/MS Analysis

Table 4 Repeatability of the analysis (n=5; 10 ng/mL, Deca-BDE: 100 ng/mL) and linearity of calibration curve (10, 20, 50, 100, 500 ng/mL (Deca BDE; X10)

Compounds	StDev	%RSD	R	Compounds	StDev	%RSD	R
Tri/ BDE-028	0.2355	2.40	0.99999	Hexa/ BDE -154	0.247	2.43	0.99997
Tetra/ BDE-47	0.4045	4.01	0.99993	Hexa/ BDE -153	0.210	2.14	0.99998
Penta/ BDE-100	0.4639	4.65	0.99997	Hepta/ BDE-183	0.591	5.84	0.99997
Penta/ BDE-99	0.3707	3.77	0.99998	Deca/ BDE -209	3.664	3.94	0.99962

Analysis Method of Polybrominated Diphenyl Ethers Using

GC-MS and GC-MS/MS Coupled With an Automated Identification

and Quantitation System with a Database

Fig. 1 Chromatograms of selected PBDEs in sediment using GC-MS and GC-MS/MS

Analytical conditions

GC-MS

Column

:GCMS-TQ8030 :Rtx - 1614 (15 m × 0.25 mm I.D., 0.10 mm)

Injection Mode	:Splitless
Sampling Time	:1 min
Injection Volume	:1 μL
Injection Temp.	:320°C
Column Oven Temp.	:140°C (3 min), 5°C /min to 320°C (5 min)
Carrier Gas	:He
Flow Control Mode	:Linear Velocity (47.9 cm/sec)
Purge Flow	:5 mL/min
High Pressure Injection	:150 kPa (1.2 min)

Ion Source Temp. :230°C Interface Temp. :300°C Solvent Cut Time :1 min Ionization Voltage :70 eV Emission Current :150 µA Acquisition Mode :SIM (GC-MS) MRM (GC-MS/MS)

AIQS-DB

Database for Compound Composer software

Data processing parameters for quantitation

JII	inparison of quantitation results of FBDEs in sediment using GC-IVIS, GC-IVIS/IVIS, and GC									
_								[ng/g]		
		Tri	Tetra	Penta	Penta	Hexa	Hexa	Hepta	Deca	
	BDE-**	28	47	100	99	154	153	183	209	
	GC-MS	0.45	4.89	1.51	6.45	0.78	1.77	1.88	112.58	
	GC-MS/MS	0.52	4.94	1.55	6.39	0.92	1.84	1.90	104.10	
	GC-DMS	0.48	4.78	1.35	6.19	0.93	1.90	2.04	99.45	

Table 5 Comparison of quantitation results of PBDEs in sediment using GC-MS, GC-MS/MS, and GC-HRMS

Gas chromatography–triple quadrupole mass spectrometry (GC-MS/MS) was applied to the analysis of PBDEs in a complex sediment sample matrix, ensuring accurate identification and low-level detection. Using the GC-MS/M, the PBDE were successfully identified, and analysis results corresponded to concentrations of PBDE determined by the conventional HR-GCMS method.

Conclusion

- 1. To minimize the use of costly internal standards, the AIQS-DB was applied to PBDE with lower toxicity and detection frequency, while the conventional method (isotope dilution) was applied to PBDEs with a higher toxicity and detection frequency to obtain precise quantitation results.
- 2. For complex matrices such as sediment, GC-MS/MS was used to selectively detect PBDE in the presence of co-extractants.
- 3. The results show that the developed method can be applied to analysis of PBDE in sediment.

First Edition: September, 2012

Shimadzu Corporation www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.