## **SHIMADZU**

# Assessing metabolic profiles in chimeric PXB mouse with humanized livers following oral dosing of troglitazone.

<u>Alan Barnes<sup>1</sup></u>; Neil J Loftus<sup>1</sup>; Kirsten Hobby<sup>1</sup>; Ian Wilson<sup>2</sup>; Yoshio Morikawa<sup>3</sup>

### 1: Introduction

In the continuing search for new chemical entities the use of chimeric mice with humanized livers are being used in the search for unexpected drug metabolites. Chimeric mice, in which the majority of the hepatocyte population of the mouse liver has been replaced by human hepatocytes, have the capacity to express human Phase I and II metabolic enzymes and hepatic transporter proteins with gene-expression profiles and phenotypes similar (up to 85%) to those of the original donor liver. To assess the viability of the chimeric Phoenix Bio (PXB) mouse in modeling human liver metabolism, troglitazone (TGZ) was dosed orally over 7 days at two dose concentrations (300 & 600 mg/kg). In pre-clinical studies TGZ showed inter-species differences in metabolism particularly in sulfation and glucuronidation pathways. The present study evaluated the metabolic profile of troglitazone and endogenous metabolites in the PXB compared to control mice (severe combined immunodeficiency - SCID) using high mass accuracy MS/MS analysis.

### 2: Materials and Methods

Liver extracts from SCID (control) and PXB (chimeric) mice were analyzed using a high resolution LC/MSn system (Nexera LC coupled with a LCMS-IT-TOF; Shimadzu Corporation). Both aqueous and organic extracts were analyzed using a Phenomenex Kinetex column (C18 1.7um, 2.1x100mm); aqueous components were separated at a flow rate of 0.6 mL/min, with the column maintained at 30 °C. The chromatographic



Figure 1. Liver metabolite profile of control mouse (SCID) following oral administration of troglitazone (TGZ).

Analysis of aqueous liver extracts by accurate mass negative ion MSn enabled detection of metabolites by MetID Solution software (Fig. 1). Confirmation of troglitazone metabolites was also possible through analysis of common fragmentation data (Fig. 2).



<sup>1</sup>Shimadzu MS/BU, Manchester, UK; <sup>2</sup>Astra Zeneca, Alderley Park, Cheshire, UK; <sup>3</sup>PhoenixBio Co. Ltd, Higashi-Hiroshima, Japan

#### 3: Results

#### 3.1: Troglitazone metabolism

Figure 2. Fragmentation analysis of troglitazone by accurate mass MSn data. Common fragment ions and neutral loss information consistent to troglitazone parent enabled characterization of metabolite structures.

Table 1. Averaged peak area data of troglitazone and metabolites detected in aqueous liver extracts

| Peak ID      | Assignment             | MS2 | RT    | m/z      | SCID 600 mg | PXB 600 mg |  |
|--------------|------------------------|-----|-------|----------|-------------|------------|--|
|              | -                      |     |       | [M-H]-   | _           | -          |  |
| Troglitazone | Parent                 | +   | 21.79 | 440.1537 | 2,807,994   | 3,898,820  |  |
| M1           | Di-hydroxy glucuronide |     | 8.61  | 648.1756 | 72,254      | 71,725     |  |
| M2           | Hydrated glucuronide   | +   | 8.40  | 634.1963 | 4,842,608   | 3,460,630  |  |
| M3           | Hydrated sulfate       | +   | 8.81  | 538.1211 | 5,390,498   | 6,246,988  |  |
| M4           | Hydroxy sulfate        | +   | 9.18  | 536.1054 | 25,491      | 28,861     |  |
| M9           | Di-hydroxy             | +   | 9.63  | 472.1435 | 177,029     | 184,855    |  |
| M10          | Hydroxy glucuronide    | +   | 9.88  | 632.1807 | 174,260     | 125,705    |  |
| M12          | Hydroxy sulfate        | +   | 11.59 | 536.1054 | 336,482     | 230,705    |  |
| M13          | Glucuronide            | +   | 11.07 | 616.1858 | 12,618,486  | 8,414,646  |  |
| M15          | Sulfate                | +   | 13.37 | 520.1105 | 25,852,882  | 26,671,871 |  |
| M16          | Di-hydroxy             | +   | 10.52 | 472.1435 | 345,952     | 150,980    |  |
| M18          | Di-hydroxy             |     | 11.12 | 472.1435 | 105,877     | 75,805     |  |
| M27          | Mono-hydroxy           | +   | 14.77 | 456.1486 | 193,239     | 280,266    |  |
| M30          | Mono-hydroxy           | +   | 15.74 | 456.1486 | 2,657,528   | 2,307,728  |  |

Peak area data comparing relative levels of troglitazone metabolites showed differences in metabolic profiles were also observed between PXB and SCID mice; consistent with metabolic profiles reported in human and mouse the sulfate conjugate being the most abundant metabolite detected while glucuronidation was greater in mouse.

#### 3.2: Endogenous metabolite profiling

Simca-P (Umetrics).



R2X[1] = 0.412847



Organic liver extracts were analyzed to examine endogenous lipid differences between PXB and SCID livers. Data was aligned using Profiling Solution software (Shimadzu Corporation) and principal component analysis (PCA) was performed to examine group differences using

> OR\_spec.M1 (OPLS/02PLS-DA w[Comp. 1]/p(corr)[Comp. 1] m/z 780.5538, RT 9.5 min Diacylglycerophosphocholine m/z 732.5538, RT 10.2 min Diacylglycerophosphocholine

> > SIMCA-P+ 12 - 2012-03-14 16:07:16 (UTC+0)

Figure 3. Statistical analysis of organic liver extracts comparing all SCID to all PXB samples.

- a) PCA analysis revealed two main experimental groups (PXB and SCID) with no clear grouping associated with dosing of troglitazone. Tight clustering of QA/QC samples indicated good system stability throughout the sample analysis period.
- b) OPLS-DA S-plot analysis comparing PXB to SCID enabled ions of highest significance to be identified. Two diacylglycerophosphocholine compounds (labeled) were detected at significantly higher levels in PXB mice compared to SCID.

MetID Solution was used to perform a targeted search of known endogenous metabolites using LipidMaps entry information from the following compound classes: phosphatidic acid, phosphatidylglycerol, phosphatidylserine, phosphatidylethanolamine, phosphatidylinositol, phosphatidylcholine. The analysis enabled identification of over 80 ions that differed significantly between sample groups (concise summary: Table 2). Putative identifications were made based on mass accuracy and isotope score. Fold differences are shown between PXB and SCID at no dose (0mg/kg), high dose (600mg/kg) and for all animals averaged (0, 300 and 600 mg/kg). Although the aim of the data analysis was to identify compounds that differed between PXB and SCID mice, the data analysis also revealed subtle differences occurring possibly as a result of troglitazone dosing. Some compounds such as the glycerophosphocholine compounds were consistent in up or down regulation irrespective of dosing, hence showing most significance in S-plot analysis (Fig. 3b) due to homogenous variance averaged across all dosing groups. Conversely other lipid species exhibited differences in the fold change, although still up or down due to being PXB or SCID, show that administration of troglitazone may influence the concentration of these lipid levels.

Table 2. Endogenous metabolites identified as significantly increased (green) or decreased (red) in PXB mice compared to SCID mice at 0mg, 600mg dosing and data from all animals averaged (SCID- indicates not detected in SCID mice).

| DB reference       | Putative ID                                     | Formula     | lon      | m/ z     | RT    | % R SD | 0 mg       | 600 mg     | All animals |
|--------------------|-------------------------------------------------|-------------|----------|----------|-------|--------|------------|------------|-------------|
|                    |                                                 |             |          |          |       | QA/QC  | PXB / SCID | PXB / SCID | PXB / SCID  |
| LM GL03010065      | TG(16:0/16:1(9Z)/18:3(9Z,12Z,15Z))              | C53H94O6    | [M+H]+   | 827.7123 | 24.35 | 8.2    | 5.72       | SCID -     | SCID -      |
| LM GP0 10 10 395   | PC(10:0/20:0)                                   | C38H76NO8P  | [M+H]+   | 706.5381 | 9.93  | 6.1    | 14.61      | 10.62      | 10.94       |
| M ID370            | Glycerophosphocholine                           | C8H20NO6P   | [M+H]+   | 258.1101 | 0.48  | 3.8    | 22.48      | 8.08       | 10.78       |
| LM GL03010078      | TG(16:1(9Z)/16:1(9Z)/18:3(9Z,12Z,15Z))          | C53H92O6    | [M+H]+   | 825.6967 | 24.16 | 7.0    | 7.92       | 20.67      | 10.46       |
| LM GL03010018      | TG(16:1(9Z)/14:0/18:1(9Z))                      | C51H94O6    | [M+NH4]+ | 820.7389 | 24.12 | 4.8    | 11.02      | 8.59       | 8.76        |
| LM GP0 10 10 490   | PC(14:0/18:1(11Z))                              | C40H78NO8P  | [M+H]+   | 732.5558 | 11.21 | 13.3   | 20.25      | 9.47       | 8.76        |
| HM DB01235         | 5-Aminoimidazole ribonucleotide                 | C8H14N3O7P  | [M+H]+   | 296.0642 | 0.41  | 3.2    | 11.48      | 7.53       | 8.26        |
| LM GP10020005      | PA(O-16:0/14:1(9Z))                             | C33H65O7P   | [M+H]+   | 605.4541 | 14.08 | 6.9    | 10.93      | 6.63       | 6.65        |
| LM GP10010088      | PA(13:0/22:2(13Z,16Z))                          | C38H71O8P   | [M-H]-   | 685.4814 | 10.26 | 7.2    | 15.10      | 2.98       | 6.10        |
| LM GP06010075      | PI(14:0/22:2(13Z,16Z))                          | C45H83O13P  | [M-H]-   | 861.5499 | 10.89 | 4.7    | 4.81       | 4.64       | 5.82        |
| LM ST05040015      | Tauroursodeoxycholic acid                       | C26H45NO6S  | [M-H]-   | 498.2895 | 6.60  | 3.2    | 9.79       | 4.34       | 5.41        |
| LM GP04020069      | PG(O-20:0/22:0)                                 | C48H97O9P   | [M+H]+   | 849.6943 | 24.00 | 7.1    | 4.83       | 5.57       | 5.37        |
| LM GP10020004      | PA(O-16:0/14:0)                                 | C33H67O7P   | [M+H]+   | 607.4697 | 17.11 | 6.8    | 6.24       | 5.72       | 5.36        |
| LM GP0 10 10 50 8  | PC(14:0/20:5(5Z,8Z,11Z,14Z,17Z))                | C42H74NO8P  | [M+H]+   | 752.5225 | 8.50  | 8.2    | 6.73       | 4.40       | 4.59        |
| LM GL03010166      | TG(17:2(9Z,12Z)/17:2(9Z,12Z)/18:2(9Z,12Z))      | C55H94O6    | [M+H]+   | 851.7123 | 24.18 | 5.7    | 5.91       | 4.36       | 4.56        |
| LM GP0 10 10 4 9 0 | PC(14:0/18:1(11Z))                              | C40H78NO8P  | [M+H]+   | 732.5538 | 10.23 | 4.1    | 6.65       | 4.53       | 4.51        |
| LM GP0 10 10 512   | PC_LM GP0 10 10 512                             | C44H76NO8P  | [M+H]+   | 778.5381 | 8.62  | 9.0    | 6.48       | 5.87       | 4.45        |
| LM GP0 10 10 490   | PC(14:0/18:1(11Z))                              | C40H78NO8P  | [M+H]+   | 732.5538 | 10.19 | 3.8    | 6.41       | 4.41       | 4.38        |
| LM GL03010140      | LM GL03010140                                   | C55H96O6    | [M+H]+   | 853.7280 | 24.36 | 4.5    | 4.59       | 4.68       | 4.23        |
| LM GP0 10 10 49 4  | PC(14:0/18:2(11Z,14Z))                          | C40H76NO8P  | [M+H]+   | 730.5381 | 9.21  | 3.7    | 5.55       | 4.39       | 4.18        |
| LM GP0 10 10 54 1  | PC(15:0/18:1(11Z))                              | C41H80NO8P  | [M+H]+   | 746.5694 | 15.46 | 4.1    | 4.23       | 4.27       | 4.06        |
| LM GP0 10 10 633   | PC(16:0/20:5(5Z,8Z,11Z,14Z,17Z))                | C44H78NO8P  | [M+H]+   | 780.5538 | 9.51  | 3.2    | 2.57       | 2.54       | 2.33        |
| LM GP0 1050 125    | PC(15:1(9Z)/0:0)                                | C23H46NO7P  | [M+H]+   | 480.3085 | 5.68  | 4.4    | -3.63      | -1.80      | -2.30       |
| LM GP0 10 10 645   | PC(16:0/22:5(4Z,7Z,10Z,13Z,16Z))                | C46H82NO8P  | [M+H]+   | 808.5851 | 10.50 | 14.0   | -3.39      | -1.88      | -2.34       |
| LM GP06010076      | PI(14:0/22:4(7Z,10Z,13Z,16Z))                   | C45H79O13P  | [M-H]-   | 857.5186 | 9.36  | 5.0    | -2.62      | -2.24      | -2.38       |
| LM GP10020032      | PA(O-18:0/18:4(6Z,9Z,12Z,15Z))                  | C39H71O7P   | [M+H]+   | 683.5010 | 18.30 | 7.6    | -3.24      | -2.20      | -2.46       |
| LM GL02010197      | DG(20:3(8Z,11Z,14Z)/20:4(5Z,8Z,11Z,14Z)/0:0)    | C43H70O5    | [M+H]+   | 667.5296 | 18.13 | 2.9    | -2.95      | -2.43      | -2.49       |
| LM GL03010722      | TG(18:3(9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/20:1(11Z)) | C59H100O6   | [M+H]+   | 905.7593 | 18.37 | 7.0    | -10.88     | - 1. 10    | -3.98       |
| LM GP0 10 11755    | PC(19:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))            | C49H86NO8P  | [M+H]+   | 848.6164 | 13.07 | 3.5    | -6.06      | -3.26      | -4.47       |
| LM GP0 10 116 70   | PC(18:3(6Z,9Z,12Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) | C48H78NO8P  | [M+H]+   | 828.5538 | 9.53  | 9.3    | -5.62      | -3.80      | -4.64       |
| LM GP0 10 10 788   | PC(18:0/20:2(11Z,14Z))                          | C46H88NO8P  | [M+H]+   | 814.6320 | 15.13 | 4.0    | -5.38      | -3.58      | -4.71       |
| LM GP01020004      | PC(O-1:0/16:0)                                  | C25H52NO7P  | [M-H]-   | 508.3409 | 6.35  | 17.7   | - 10 .58   | -3.88      | -4.85       |
| LM GP0 10 10 788   | PC(18:0/20:2(11Z,14Z))                          | C46H88NO8P  | [M+H]+   | 814.6320 | 15.54 | 5.7    | -26.45     | -4.61      | -5.38       |
| LM GP03010199      | PS(16:0/22:1(11Z))                              | C44H84NO10P | [M+H]+   | 818.5906 | 8.51  | 6.2    | -50.23     | -5.10      | -5.65       |
| LM GP0 10 110 28   | PC(20:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z))            | C50H88NO8P  | [M+H]+   | 862.6320 | 14.48 | 4.7    | -20.00     | -9.37      | -14.21      |
| LM GP01020072      | PC(O-16:0/4:0)                                  | C28H58NO7P  | [M+H]+   | 552.4024 | 7.10  | 6.2    | -43.04     | -12.65     | -14.76      |

#### 4: Conclusions

- putative metabolite identification.



Human specific troglitazone metabolism, consistent to published data, was shown from PXB mice. Endogenous lipid differences between PXB and SCID were detected some consistent irrespective of troglitazone dosing and others that may be influenced by troglitazone dosing.

• MetID Solution combined use of accurate mass and isotope scoring enabled greater confidence in