

Application

News

Supercritical Fluid Chromatography

Automated Optimization of Chiral Separation Parameters Using Nexera UC Chiral Screening System

No.**L495**

Separation Parameters for the Chiral Screening System

molecules and are not superimposable on their mirror images. HPLC has been the main method used to separate such chiral compounds, but in recent years, the use of supercritical fluid chromatography (SFC) has been gaining attention. The main mobile phase used for chiral SFC is supercritical carbon dioxide, with low polarity, low viscosity, and high diffusivity, to which polar organic solvents (modifiers) are added to control solubility and polarity. Therefore, chiral compound separation by HPLC, which generally uses normal phase conditions, offers the potential for high speed, low organic solvent consumption, low cost, and low environmental impact. However, chiral SFC requires selecting a variety of separation parameters, such as columns and modifiers, which can involve large amounts of time and effort. This article describes using the Nexera UC chiral screening system to automatically optimize the large number of separation parameters by switching between up to 12 columns and various mixture ratios of four types of modifiers. This can significantly reduce the effort required.

Chiral compounds contain asymmetric carbons in their

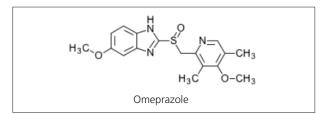


Fig. 1 Sample Used to Evaluate the Method Scouting Function

Model sample: The structure of omeprazole is shown in Fig. 1. Daicel CHIRALPAK[®]/CHIRALCEL[®] series 12 columns for chiral analysis were used for the analysis. These columns offer a line of complementary stationary phase columns that are able to separate a wide variety of chiral compounds. When used in combination with the Nexera UC chiral screening system, which features a method scouting function, optimal chiral separation parameters can be determined easily. In addition, three types of modifiers were used, methanol, ethanol, and a mixture of acetonitrile and ethanol. Details about the separation parameters are indicated in Table 1. The optimal parameters for chiral separation were comprehensively selected from the total of 36 possible combinations of modifiers (3 types) and columns (12 types).

Table 1 Analytical Conditions

Column	: CHIRALPAK [®] , CHIRALCEL [®] Series
Mobile Phase	100 mm L. × 3.0 mm I.D., 3 μm : A; Super critical fluid of CO ₂ B; Modifier: Methanol, Ethanol, mixture of
Time Program	Acetonitrile: Ethanol = $3:1 (v:v)$: B Conc. 20 % (0 - 8 min) \rightarrow 40 % (8 - 10 min) \rightarrow 20 % (10 - 14 min)
Flowrate	: 3 mL/min
Column Temp.	: 40 °C
Injection Volume	
BPR Pressure	: 10 Mpa
Detector	: Photodiode Array Detector (Max Plot 210 - 400 nm)

Fig. 2 Method Scouting Solution Operating Screen for Nexera UC

Automated Optimization of Chiral Separation Parameters for Omeprazole

Fig. 3 shows the results from a total of 36 possible combinations of 12 chiral columns and 3 types of modifiers (methanol, ethanol, and acetonitrile/ethanol mixture).

For omeprazole, separation of peaks for two chiral forms were confirmed within 8 minutes of retention. Fig. 4 shows the separation evaluation and optimal parameter

ranking results from the optional software. The software automatically ranks all the chromatograms with separation greater than a given criteria (in this case, 1.5). This confirmed the utility of using the Nexera UC chiral screening system to automatically optimize separation parameters for chiral SFC, which otherwise requires a complicated process of selecting analytical conditions.

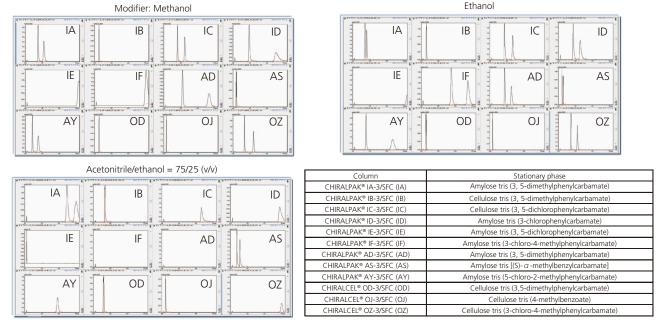


Fig. 3 Comparison of Separation Using Different Combinations of 12 Chiral Columns and 3 Modifiers

Ranking	Run No.	Analytical Condition	Resolution	Separatoin factor	Symmetry factor Retention fact			n factor	or Area%		Peak
		Analytical Condition			Peak1	Peak2	Peak1	Peak2	Peak1	Peak2	number
1	32	Omeprazole_OZ-3_MeOH_20_40	7.965	1.921	1.16	1.159	6.583	12.644	49.829	50.171	2
2	17	Omeprazole_IC-3_MeOH_20_40	5.587	1.602	1.387	1.274	8.078	12.937	49.971	50.029	2
3	16	Omeprazole_IC-3_EtOH_20_40	5.382	1.639	1.915	1.661	8.617	14.124	49.984	50.016	2
4	31	Omeprazole_OZ-3_EtOH_20_40	5.377	1.599	1.169	1.162	7.229	11.561	49.778	50.222	2
5	1	Omeprazole_AD-3_EtOH_20_40	3.996	1.509	1.257	1.404	8.779	13.25	50.054	49.946	2
6	8	Omeprazole_AY-3_MeOH_20_40	3.55	2.08	1.178	1.145	3.652	7.597	49.974	50.026	2
7	11	Omeprazole_IA-3_MeOH_20_40	3.428	1.523	1.464	1.312	7.435	11.327	49.973	50.027	2
8	4	Omeprazole_AS-3_EtOH_20_40	2.515	1.673	1.657	1.518	1.244	2.081	49.754	50.246	2
9	10	Omeprazole_IA-3_EtOH_20_40	1.586	1.157	1.322	1.279	7.115	8.234	49.347	50.653	2

Separation Parameters for Rank 1 Column: CHIRALCEL® OZ-3/SFC Modifier: Methanol

Separation Parameters for Rank 2 Column: CHIRALPAK[®] IC/SFC Modifier: Methanol

Separation Parameters for Rank 3 Column: CHIRALPAK[®] IC/SFC Modifier: Ethanol

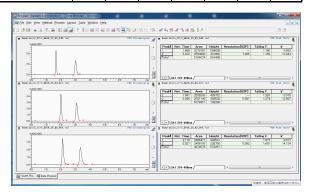


Fig. 4 Evaluation of Separation Parameters and Chiral Separation Chromatogram Using Optimized Parameters

* CHIRALPAK® and CHIRALCEL® are registered trademarks of Daicel Corporation.

First Edition: Oct. 2015

Shimadzu Corporation

www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.