

Analysis of multiple pesticide residues in salad using triple quadrupole GCMS/MS system

ASMS 2013 ThP27-539

Ankush Bhone¹, Dheeraj Handique¹, Durvesh Sawant¹, Prashant Hase¹, Sanket Chiplunkar¹, Ajit Datar¹, Jitendra Kelkar¹, Pratap Rasam¹, Akshata Salve² ¹Shimadzu Analytical (India) Pvt. Ltd., 1 A/B Rushabh Chambers, Makwana Road, Marol, Andheri (E), Mumbai-400059, Maharashtra, India. ²Guru Nanak Institute of Research and Development, G. N. Khalsa College, Matunga, Mumbai- 400059, Maharashtra, India.

PO-CON1320E

Analysis of multiple pesticide residues in salad using triple quadrupole GCMS/MS system

1. Introduction

Pesticides are used in agriculture to protect crops from insects, fungi and weeds. Exposures to pesticides in different countries have different regulations to control usage and its content in consumer products. So it has become essential to analyze multiple pesticides in a single run to ensure fast and reliable testing method. Generally most of the cooked products have low risk of pesticides contamination as they get degraded at high temperature. Salad is usually consumed directly without being cooked and this increases the risk of exposure to multi pesticide residues.

The objective of the current study is to develop a fast, sensitive, selective, accurate and reliable method for analysis of multi pesticide residues in pre-cooked and post-cooked salad separately by using Shimadzu GCMS-TQ8030, employing QuEChERS method for extraction, so as to determine the risk of pesticides in salad.

Fig. 1 Salad

2. Extraction of Pesticides from Salad

Extraction of pesticides was done using QuEChERS method, described as follows^{[1][2][3]}

Analysis of multiple pesticide residues in salad using triple

quadrupole GCMS/MS system

2-1. GCMS/MS Analytical conditions

The analysis was carried out on Shimadzu GCMS-TQ8030 as per the condition given below,

Fig. 2 GCMS-TQ8030 with Triple quadrupole system by Shimadzu

Key Features of GCMS-TQ8030

High-speed scan and data acquisition for accurate quantitation at 20,000 u/seconds.

Capable of performing simultaneous Scan/MRM

Ufsweeper[®] technology efficiently sweeps residual ions from the collision cell for fast, efficient ion transport and no cross-talk Two overdrive lenses reduce random noise from helium, high-speed electrons, and other Factors to improve S/N ratio. Flexible platform with EI, CI, and NCI ionization techniques

Full complement of acquisition modes including MRM, Scan/MRM and Neutral Loss Scan.

GCMS/MS analytical conditions^[4]

Chromatographic parameters

Column	: Rxi-5Sil MS (30 m × 0.25 mm × 0.25 μm)							
Injection Mode	: Split							
Split ratio	: 5.0							
arrier gas	: Helium							
Flow Control Mode	: Linear Velocity							
Linear Velocity	: 40.2 cm/sec							
Column Flow	: 1.2 mL/min							
Injection Volume	: 2.0 µL							
PTV Temp. Program	: Rate °C /min	Temperature °C	Hold time (min)					
		150.0	0.0					
	300.0	290.0	41.0					
Column Temp. Program	: Rate °C /min	Temperature °C	Hold time (min)					
		70.0	2.0					
	25.0	150.0	0.0					
	3.0	200.0	0.0					
	8.0	280.0	10.0					
Mass Spectrometry parameters								
Ion Source Temp	: 230.0°C							
Interface Temp	: 280.0°C							
Ionization Mode	: El							
Mode	: MRM							

2-2. List of pesticides

Table 1

Sr. No.	Pesticides	Sr. No.	Pesticides	Sr. No.	Pesticides
1	3-Chloroaniline	11	Propoxur	21	Beta hch
2	Novaluron	12	Diphenylamine	22	Atrazine
3	Diflubenzuron	13	Trifluralin	23	Monolinuron
4	Dichlobenil	14	Benfluralin	24	Clomazone
5	3,4-Dichloraniline	15	Monocrotophos	25	Lindane
6	Trichlorfon	16	Alpha hch	26	Terbufos
7	cis 1,2,3,6-Tetrahydrophthalimide	17	Pencycuron DEG.	27	Diazinon
8	Molinate	18	Dimethoate	28	Chlorothalonil
9	Omethoate	19	Carbofuran	29	Paraoxon methyl
10	Fenobucarb	20	Simazine	30	Delta hch

Sr.No.	Pesticides	Sr. No.	Pesticides	Sr. No.	Pesticides
31	Etrimfos	63	Procymidone	95	Trifloxystrobin
32	Tri-allate	64	Triflumizole	96	Chloridazon
33	Fenchlorphos oxon	65	Methidathion	97	Fluopicolide
34	Fenchlorphos	66	Chlordane trans	98	Triphenyl phosphate
35	Metribuzin	67	Bromophos-ethyl	99	Diclofop
36	Vinclozolin	68	Alpha endosulfan	100	Captafol
37	Parathion methyl	69	Fenamiphos	101	Diflufenican
38	Alachlor	70	Hexaconazole	102	Oxycarboxin
39	Carbaryl	71	Isoprothiolane	103	Spiromesifen
40	Heptachlor	72	Profenofos	104	Iprodione
41	Metalaxyl/ Metalaxyl M	73	p,p-DDE	105	Carbosulfan
42	Chlorpyriphos methyl	74	Fipronil sulphone	106	Phosmet
43	Methiocarb	75	Oxadiazon	107	Bromopropylate
44	Dichlofluanid	76	Myclobutanyl	108	Bifenthrin
45	Chlorpyriphos oxon	77	Iprovalicarb	109	Methoxychlor
46	Malathion	78	Flusilazole	110	Dicofol
47	Metholachlors	79	Buprofezin	111	Fenazaguin
48	Aldrin	80	Oxyfluorfen	112	Phenothrin
49	Thiobencarb	81	Kresoxim-methyl	113	Tetradifon
50	Chlorpyriphos ethyl	82	Iprovalicarb-1 & 2	114	Phenothrin
51	Fenthion	83	Chlorfenapyr	115	Lambda-cyhalothrin
52	Triadimefon	84	Cyproconazole-1 & 2	116	Acrinathrin
53	Flufenacet	85	Endrin	117	Permethrin-1
54	4,4- Dichlorobenzophenone	86	Beta endosulfan	118	Permethrin-2
55	Tetraconazole	87	Fenthion	119	Cyfluthrin-1
56	Pendimethalin	88	Oxadiargyl	120	Cyfluthrin-2
57	Penconazole	89	Fenthion sulphone	121	Cyfluthrin-3
58	Fipronil	90	o,p-DDT	122	Boscalid
59	Chlorfenvinphos	91	Benalaxyl /benalaxyl M	123	Etofenprox
60	Captan	92	Carfentrazone	124	Fenvalerate
61	Quinalphos	93	Edifenfos	125	Dimethomorph
62	Folpet	94	Endosulfan sulphate	126	Dimethomorph

3. Results

🕀 SHIMADZU

For MRM scanning, well resolved pesticides were grouped together. Standard solution mixture of about 1 ppm concentration was prepared and injected using programmable temperature vaporization (PTV) technique to determine precursor ions for individual pesticide. Further product ion scan was taken for individual pesticide from the standard mixture followed by appropriate optimization of collision energy to obtain their characteristic MRM transitions. Based on MRM transitions, mixture of 126 pesticides was analyzed in a single run (Fig. 3)^[4]. Linearity was plotted from LOQ concentration of 10 ppb to 100 ppb and recovery was carried out by spiking known pesticides concentration of 100 ppb as depicted in Table 2 to 5.

Reproducibility of all the listed pesticides was studied and results found were as follows

Fig. 3 TIC for Pesticides Standard mixture.

Analysis of multiple pesticide residues in salad using triple quadrupole GCMS/MS system

Analysis of multiple pesticide residues in salad using triple guadrupole GCMS/MS system

4. Conclusion

- A method is developed for quantification of more than100 pesticides at very low concentration level in Salad matrix sample by using GCMS/MS technique with QuEChERS method.
- Ultra fast scanning, sweeper and advance scanning speed protocol (ASSP) technique enabled sensitive, selective, fast, reproducible, linear and accurate pesticides analysis.
- It is safe to consume post-cooked salad rather than the pre-cooked, as the pesticide concentration levels were found to be greatly reduced in cooked salad sample.

5. References

- [1] EURL-FV Multi residue Method using QuEChERS followed by GC-QqQ/MS/MS and LC- QqQ/MS/MS for Fruits and Vegetables (European Reference Laboratory, 2010-M1)
- [2] Simultaneous analysis of Residual Pesticides in Foods via the QuEChERS Method utilizing GC-MS/MS. Application Data sheet No-71, Jan uary, 2013.
- [3] Pesticide Residues in Foods by Acetonitrile Extraction and Partitioning with Magnesium Sulfate, AOAC official Method 2007.01
- [4] Scan/MRM Analysis of Residual Pesticides in Food using GC-MS/MS (3) Shimadzu Application Data sheet No 72, Jan uary, 2013.

First Edition: June, 2013

Shimadzu Corporation www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

© Shimadzu Corporation, 2013