# 🕀 SHIMADZU

### Profiling of oligosaccharides and polysaccharides in alcoholic

## beverages using single quadrupole LC-MS

Yoshiyuki Watabe<sup>a</sup>, Takanari Hattori<sup>b</sup>, Natusuki Iwata<sup>b</sup>, Hidetoshi Terada<sup>b</sup>, Yusuke Inohana<sup>b</sup> <sup>a</sup>Shimadzu General Service, Kyoto, Japan. <sup>b</sup>Shimadzu Corporation, Kyoto, Japan

#### 1. Overview

Simultaneous analysis of oligosaccharides and polysaccharides was achieved using a single quadrupole LC-MS. Up to 36-mer polysaccharides (average molecular weight 5855.09) were detected in beer as the trivalent ion (m/z 1949.63). As the results of principal component analysis and relative comparison, profiling of oligosaccharides and polysaccharides in six types of alcoholic and non-alcoholic beer was successfully performed.

#### 2. Introduction

Recently, increasing attention has been devoted to metabolomics using a mass spectrometer in the food industry. Objective evaluation of taste and search for functional components in food products are expected using metabolomics. Beer is made mainly from fermented malt, so it contains malt-derived and fermentationderived compounds. Some of these compounds affect the taste and flavor of beer. Therefore, it is important to analyze these compounds comprehensively for the evaluation of beer. This poster describes the profiling of oligosaccharides and polysaccharides in alcoholic beverages

#### 3. Methods

Seven f beverages were used in this study. Table 1 shows the detailed sample information. All beverages used in this study were 10-fold diluted with water. LC/MS analysis was performed using a Nexera™ XR HPLC system coupled with an LCMS-2050 single-quadrupole mass spectrometer (Shimadzu Corporation, Japan, Figure 1). The target compounds were malto-oligosaccharides and polysaccharides (up to 40-mer) that are considered to be contained in beer. Polysaccharides with a molecular weight of 1500 or more were detected as polyvalent ions from the viewpoint of measurable mass range and sensitivity.

| Table 1 Sample Details |                                  |  |  |
|------------------------|----------------------------------|--|--|
| Sample                 | Feature                          |  |  |
| Beer A                 | Lager beer (bottom fermentation) |  |  |
| Beer B                 | Ale beer (top fermentation)      |  |  |
| Low-malt beer C        | Purine free                      |  |  |
| Beer D                 | Soy protein as ingredients       |  |  |
| Non-alcoholic beer E   | Made in Japan                    |  |  |
| Non-alcoholic beer F   | Made in Germany                  |  |  |
|                        |                                  |  |  |

|                     | Table 2 Analytical Conditions                |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------|----------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [HPLC conditions]   | :Nexera XR                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Column              | :Shodex Asahipak NH2P-40 3E                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | (250 mm x 3.0 mm I.D., 4.0 μm)               |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Flow rate           | :0.3 mL/min                                  |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mobile phase        | :A) 2.5 mmol/L Ammonium bicarbonate aq.      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | B) 25 mmol/L Ammonium bicarbonate aq. /      |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     | Acetonitrile=10:90                           |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Time program        | :70%B (0 min)→ 40%B (25 min)→ 70%B (25.01-30 | min)       | and the second s |
| Column temp.        | :40 °C                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Injection volume    | :5 µL                                        |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                     |                                              |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| [MS conditions]     | :LCMS-2050                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ionization          | :ESI/APCI (DUIS™), Negative mode             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mode                | :SIM (40 events)                             |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Nebulizing gas flow | v:3.0 L/min                                  | <b>F</b> : | Name TM XD and LONG 005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Drying gas flow     | :5.0 L/min                                   | Figure 1   | Nexera M XR and LCMS-205                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Heating gas flow    | :7.0 L/min                                   |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Desolvation temp.   | :400°C                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DL temp.            | :150°C                                       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

#### 4. Results

By using a highly sensitive mass spectrometer as a detector for LC, trace determination of oligosaccharides and polysaccharides was able to be performed, whereas impossible employing LC-RID or LC-ELSD method. The concentration ranges of calibration curves, coefficients of determination (r<sup>2</sup>), and repeatabilities are shown in Table 2. Good linearity over a wide concentration range was confirmed as well as repeatability at lowest concentration for each compound

| Table 2 | Calibration | Curves | and | Repeatabilitie |
|---------|-------------|--------|-----|----------------|
|         |             |        |     |                |

| Compound      | Conc. Range<br>(mg/L) | r <sup>2</sup> | %RSD<br>(R.T.) | %RSD<br>(Peak area) |
|---------------|-----------------------|----------------|----------------|---------------------|
| Glucose       | 0.05-100              | 0.998          | 0.25           | 4.49                |
| Maltose       | 0.05-10               | 0.999          | 0.20           | 5.09                |
| Maltotriose   | 0.01-10               | 0.999          | 0.40           | 8.33                |
| Maltotetraose | 0.01-50               | 0.995          | 0.36           | 6.46                |
| Maltopentaose | 0.01-50               | 0.997          | 0.52           | 5.66                |
| Maltohexaose  | 0.05-50               | 0.997          | 0.23           | 4.35                |
| Maltoheptaose | 0.05-100              | 0.997          | 0.37           | 6.65                |

Table 3 shows the number of oligosaccharides and polysaccharides detected in each sample. In beer A, B, and F, polysaccharides that are thought to be polymers of glucose were detected in addition to various malto-oligosaccharides such as maltose. Figure 2 shows a SIM chromatogram of beer B. Up to 36-mer polysaccharides (average molecular weight 5855.09) were detected as the trivalent ion (m/z 1949.63).



Figure 2 Chromatogram of Beer B

Table 3 Number of Detected Compounds

| Beer A | Beer B | Low-malt beer C | Beer D | Non-alcoholic<br>beer E | Non-alcoholic<br>beer F |
|--------|--------|-----------------|--------|-------------------------|-------------------------|
| 36     | 36     | 4               | 36     | 15                      | 36                      |

Principal component analysis (PCA) was conducted by Multi-Package omics Analysis (Shimadzu Corporation, Japan) using the peak area of each compound. Figure 3 shows the result of PCA. From the score plot, it was found that "beer A and B" and "beer C and E" are thought to be in same categories. In the loading plot, many oligosa-ccharides and polysaccharides are plotted on the left side of the first principal component (PC 1). That suggests that PC 1 shows the remained amounts of saccharides in beverages.



Figure 3 PCA Result for Beer

Table 4 Relative comparison of oligosaccharides and

The relative peak areas (maximum 100) for each oligosaccharide and polysaccharide were heatmapped (Table 4). Beer A and Beer В contained large amounts of oligosaccharides and polysaccharides that seemed to be derived from malt. Non-alcoholic beer E and non-alcoholic beer F had different tendencies. Nonalcoholic beer E is made by seasoned without wort fermentation for zero alcohol and carbohydrates. Therefore. non-alcoholic beer E has less oligosaccharides and polysaccharides. DP1 (glucose) and DP2 (maltose) were more abundant in nonalcoholic beer F. lt is considered that glucose and maltose remain undecomposed due to the manufacturing method that suppresses alcoholic fermentation



#### 5. Conclusions

An easy and comprehensive method for simultaneous analysis of oligosaccharides and polysaccharides using a single quadrupole LC-MS was developed.

Profiling of oligosaccharides and polysaccharides in alcoholic beverages was successfully performed.