

Determination of 200 Residual Pesticides in Food by Ultra High Performance Liquid Chromatography/Triple Quadrupole Mass Spectrometry

ASMS 2013 ThP-528

Hongyuan Hao¹, Yikun Deng², Jinting Yao¹, Hengtao Dong¹, Hui Gao¹, Yueqi Li¹, Taohong Huang¹, Shin-ichi Kawano¹, Yuki Hashi¹ ¹Shimadzu Global COE, Shimadzu (China) Co., Ltd., China,

²Technology Dept., Shimadzu (Guangzhou) Analysis & Technology Services Co., Ltd., China

Determination of 200 Residual Pesticides in Food by Ultra High Performance Liquid Chromatography/Triple Quadrupole Mass Spectrometry

1. Introduction

Pesticides are widely used in crop planting and growth process. However, residual pesticides in food could enter human body and harm to human health. Therefore, the maximally allowed residual pesticides in food have strictly regulated in the world. In recent years, the China government continues to strengthen supervision and is developing quicker and highly sensitive analytical method. Usually, the qualitative LC/MS/MS is based on the ratio of intensities between targetions and reference ions. But in some special occasions, especially for determination of low concentration samples, qualitative reliability is not high enough, which may cause false positive/negative results. So use of MS/MS library for screening and qualitative confirmation of the unknown pesticides is very meaningful. This paper describes UHPLC/MS/MS, a rapid and accurate screening method for determination of 200 residual pesticides in agricultural products.

2. Methods and Materials

Sample Preparation

The pesticides in food samples were extracted with acetonitrile. After centrifugation, solid-phase extraction with NH₂ sorbents was employed to purify the sample. After concentration and filtration, the final extract was injected to the LC-MS/MS instrument.

LC/MS/MS analysis

Analytical Conditions

UHPLC (Nexera, Shimadzu Corporation, Japan)

. ,	
Column	: Shim-pack XR-ODSIII (150 mmL. $ imes$ 2.0 mmi.d., 2.2 μ m)
Mobile phase A	: 2 µmol/L ammonium acetate/0.1% formic acid water
Mobile phase B	: acetonitrile
Gradient program	: 10%B (0-1 min)-50%B (4 min)-75%B (20 min)
	-95%B (22-25 min)
Flow rate	: 0.4 µL/min
Oven temperature	: 40 °C
Injection volume	: 5 μL

MS/MS (LCMS-8040, Shimadzu Corporation, Japan)

Ionization	: ESI
Ionization voltage	: +4.5 kV (positive), -3.5 kV (negative)
Nebulizing gas flow	: 3.0 L/min
Drying gas pressure	: 20 L/min
DL temperature	: 250 °C
BH temperature	: 450 °C

Determination of 200 Residual Pesticides in Food by Ultra High Performance Liquid

Chromatography/Triple Quadrupole Mass Spectrometry

3. Results and Discussion

Analytes' specific MS/MS parameters (Q1 pre-bias (V), Q3 pre-bias (V) and collision energy) were optimized using automated flow injection analysis. So, each compound was optimized in only a few minutes using the automated

software function provided in Labsolutions. The compound information and MS/MS parameters for 200 pesticides are listed in an excel document for using conveniently, as shown in Table 1.

Table 1 Representative compound information and MS/MS parameters of pesticides

	A	В	С	D	E	F	G	H	I	J	K	L	H	N	-
1	Serial#	Cas#	Target Flag	Compound Name (CHN)	ompound Name (ENC	Fomular	Mw.	Monitor Ion	Mode		Precursor Ion1	Product Ion 1	Dwell Time (msec)	Q1 Pre Bias(V) 1	
173	172	24017-47-8	Target	三唑磷	Triazophos	C12H16N3O3PS	313.3	[M+H]*	ESI+	Quan	314.05	162.15	30	-23	
174	173	52-68-6	Target	啟百虫	Trichlorphon	C4H3Cl3O4P	257.4	[M+H] ⁺	ESI+	Quan	256.90	108.95	30	-29	
175	174	41814-78-2	Target	三环唑	Tricyclazole	C ₉ H ₇ N ₃ S	189.2	[M+H]*	ESI+	Quan	190.00	163.00	30	-21	
176	175	24602-86-6	Target	十三吗啡	Tridemorph	C19H39NO	297.5	[M+H]*	ESI+	Quan	298.30	130.10	30	-30	
177	176	141517-21-7	Target	肟菌酯	Trifloxystrobin	C20H19F3N2O4	408.4	[M+H]*	ESI+	Quan	409.10	186.05	30	-20	
178	177	99387-89-0	Target	氟菌唑	Triflumizole	C15H15CIF3N3O	345.8	[M+H]*	ESI+	Quan	346.05	278.05	30	-17	
179	178	64628-44-0	Target	杀铃脲	Triflumuron	C15H10CIF3N2O3	358.7	[M+H]*	ESI+	Quan	359.10	156.00	30	-17	
180	179	131983-72-7	Target	灭菌唑	Triticonazole	C17H20CIN3O	317.8	[M+H]*	ESI+	Quan	318.10	70.05	30	-16	
181	180	\$1-\$1-2	Target	杀鼠灵	Warfarin	C19H18O4	308.3	[M+H]*	ESI+	Quan	309.10	163.05	30	-15	
182	181	202480-67-9	Target	2,4-二氯苯氧基-3,5,6-d3-乙酸	2,4-D D3	C ₁ H ₃ Cl ₂ D ₃ O ₃	224.1	[M-H]	ESI-	Quan	222.00	164.10	30	15	
183	182	94-82-6	Target	2,4- 箱丁酸	2,4-DB	C10H10Cl2O3	249.1	[M-H]	ESI-	Quan	247.00	161.10	30	17	
184	183	94-75-7	Target	2,4-滴	Dichlorophenoxyacetic	CgH4C12O3	221.0	[M-H]	ESI-	Quan	219.00	161.10	30	15	
185	184	50594-66-6	Target	三氟羧草醚	Acifluorofen	C14H7CIF3NO5	361.7	[M-H]	ESI-	Quan	360.00	316.05	30	26	-
186	185	28772-56-7	Target	溴敌隆	Bromadiolone	C30H23BrO4	527.4	[M-H]	ESI-	Quan	527.10	250.10	30	38	
187	186	1689-84-5	Target	溴苯腈	Bromoxynil	C ₂ H ₃ Br ₂ NO	276.9	[M-H]	ESI-	Quan	275.90	\$1.05	30	19	
188	187	94-74-6	Target	二甲四氟	Chiptox	CpHpClO3	200.6	[M-H]	ESI-	Quan	199.10	141.10	30	14	
189	188	56-75-7	Target	氯霉素	Chloramphenicol	C11H12Cl2N2O5	323.1	[M-H]	ESI-	Quan	321.00	152.15	30	22	
190	189	196791-54-5	Target	灭幼脲	Chlorobenzuron	C14H10Cl2N2O2	309.2	[M-H]	ESI-	Quan	307.00	154.15	30	21	
191	190	1918-00-9	Target	麦草畏	Dicamba	C6H6Cl2O3	221.0	[M-H]	ESI-	Quan	219.00	175.10	30	25	
192	191	120-36-5	Target	2,4-D丙酸	Dichlorprop	CgHgCl2O3	235.1	[M-H]	ESI-	Quan	233.00	161.00	30	16	
193	192	83164-33-4	Target	吡氟酰草胺	Diflufenican	$C_{19}H_{11}F_5N_2O_2$	394.3	[M-H]	ESI-	Quan	393.10	272.10	30	28	
194	193	131341-86-1	Target	哈茵腈	Fludioxonil	C12H6F2N2O2	248.2	[M-H]	ESI-	Quan	247.10	180.20	30	17	
195	194	101463-69-8	Target	氟虫脲	Flufenoxuron	C21H11CIF6N2O3	4\$8.8	[M-H]	ESI-	Quan	487.10	156.10	30	17	-
14 4 1	H LCMSM	S Pesticides	Database	2		2		1 (1997	•	
航绪											(0% Θ —	-0	•

For UHPLC/MS/MS analysis of residual pesticides which give positive and negative ions, the mobile phase was optimized. 200 pesticides were analyzed and the MRM chromatograms were obtained as shown in Fig. 1 The calibration curves, limits of quantitation (LOQs), repeatability, and recoveries were investigated. The calibration curves were given with good correlation coefficients greater than 0.999. LOQs for 93% of pesticides were better than 1 µg/kg. The repeatability (%RSD) of standard pesticides at 10 μ g/L was less than 5% for 95% of the target pesticides. Recoveries of pesticides spiked in a cucumber sample at 1 μ g/kg were between 57.2% and 125.3%. Recoveries for 84% of all pesticides ranged from 80% to 120%. Representative quantitative results are shown in Table 2. The results indicate that this method is rapid and reliable.

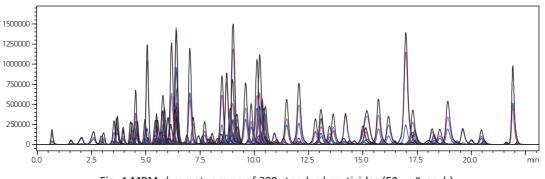
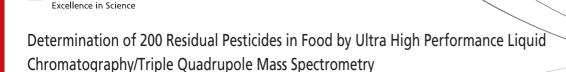


Fig. 1 MRM chromatograms of 200 standard pesticides (50 $\mu\text{g/L}$ each)

Determination of 200 Residual Pesticides in Food by Ultra High Performance Liquid Chromatography/Triple Quadrupole Mass Spectrometry

No.	Name	Y=aX+b	Rinearity Lange (µg/L)	r	LQQ (µg/kg)	%RSD (1 μg/L)	Recovery (1 µg/kg)
52	Diethofencarb	Y=(11607.9)X+(11387.8)	0.5~200	0.9997	0.22	3.21	94.20
53	Diethyltoluamide	Y=(79943.4)X+(63810.1)	0.5~200	0.9993	0.01	2.79	92.70
54	Dimepiperate	Y=(39447.4)X+(3718.42)	0.5~200	0.9997	0.02	2.67	89.60
55	Dimethirimol	Y=(30050.7)X+(21635.8)	0.5~200	0.9993	0.02	2.13	93.80
56	Dimethoate	Y=(11607.9)X+(26206.1)	0.5~200	0.9992	0.02	1.87	93.10
57	Dimethomorph	Y=(13116.6)X+(-2309.89)	0.5~200	0.9998	0.07	3.10	93.40
58	Diniconazole	Y=(4273.37)X+(-1549.44)	0.5~200	0.9991	0.23	3.39	110.70
59	Dinotefuran	Y=(14619.3)X+(3801.66)	0.5~200	0.9993	0.02	3.42	95.40
60	Diuron	Y=(7835.16)X+(1847.00	0.5~100	0.9997	0.07	4.23	104.00
61	Dymron	Y=(246705)X+(158759)	0.5~200	0.9991	0.00	2.44	87.90
62	Epoxiconazole	Y=(8801.47)X+(4813.78)	0.5~200	0.9996	0.05	4.58	77.10
63	Esprocarb	Y=(34385.0)X+(-9941.46)	0.5~200	0.9999	0.07	3.68	79.00
64	Ethametsulfuron-methyl	Y=(13881.3)X+(-1589.33)	0.5~200	0.9994	0.02	4.46	102.10
65	Ehiofencarb	Y=(41267.8)X+(15848.2)	0.5~100	0.9998	0.04	2.95	99.50
66	Ethion	Y=(6519.60)X+(-5245.53)	0.5~200	0.9995	0.06	1.90	90.70
67	Ethoprophos	Y=(14174.9)X+(15071.9)	0.5~200	0.9993	0.05	3.46	85.20
68	Fenamiphos	Y=(23409.3)X+(10202.8)	0.5~200	0.9993	0.02	2.65	99.50
69	Fenarimol	Y=(303.283)X+(728.986)	2~200	0.9997	2.64	8.84	57.20
70	Fenobucarb	Y=(4791.08)X+(6489.96)	0.5~200	0.9990	0.09	4.52	87.80
71	Fenoxycarb	Y=(2134.24)X+(-225.561)	0.5~200	0.9999	0.83	4.48	105.30


Table 2 Representative quantitative results of pesticides

Nowadays, laboratories are expanding the number of target pesticides. Rapid and reliable method for determination of trace amount of residual pesticides is necessary. Usually, the qualitative LC/MS/MS is based on the ratio of intensities between target ions and reference ions.

But in some cases, especially for determination of pesticides at low concentration, qualitative reliability is not high enough, which may cause false positive/negative results. So use of the MS/MS spectra library for searching and qualitative confirmation of the pesticides is very meaningful.

Туре		Even	t# +/		Compound Name	m/z	Time (0.35	i0 min - 22.413 m	nin)		
- Pro	duct Ion Scan	12		+	氧乐果 100.00 > 5	0.00:250					10
MRM		13		+	涕灭威亚矾 229.0	0>166.10					1
- Pro	duct Ion Scan	14		+	涕灭威亚矾 100.0	0 > 50.00					1
MRM		15		+	呋虫胺 203.10>12	9.10, 20					1
- Pro	duct Ion Scan	16		+	呋虫胺 100.00 > 5	0.00:250					1
MRM		17		+	涕灭威矾 245.10>	166.10,					1
- Pro	duct Ion Scan	18		+	涕灭威矾 100.00 >	≥ 50.00:3					1
MRM		19		+	ク 动磁 224 10>12	7 10 22					1
MRM			Acq. Tim	e: 3	.117 - 3.717	7 n	nin <u>C</u> ompo	ound Name: 涕灭國	成矾		_
Ch	Precursor m	/z P	roduct m/z	Pa	use Time (msec)	Dwell Ti	me (msec)	Q1 Pre Bias(V)	CE	Q3 Pre l	Bi
Ch1	245.10	1	56.10	1.0)	1.0		-12.0	-15.0	-17.0	-
Ch2	245.10	1	09.10	1.0)	1.0		-12.0	-20.0	-19.0	-
Ch3											
4					III						

Fig. 2 Setting of product ion scan event triggered by MRM

G SHIMADZU

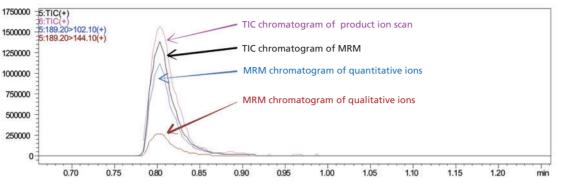


Fig. 3 Mass chromatograms of a target pesticide

A simultaneous quantitative and qualitative method file with a function of product ion scan event triggered by MRM is shown in Fig. 2 Both the TIC chromatogram of MRM and the TIC chromatogram of product ion scan were obtained as shown in Fig. 3 By searching the spectrum of product ion scan using the pesticide spectra library, a pesticide (isoprocarb) was found (Fig. 4). Here, 9 pesticides were detected, and their similarity indexes were over 70 when the concentrations of pesticides were larger than 1 μ g/kg (Table 3).

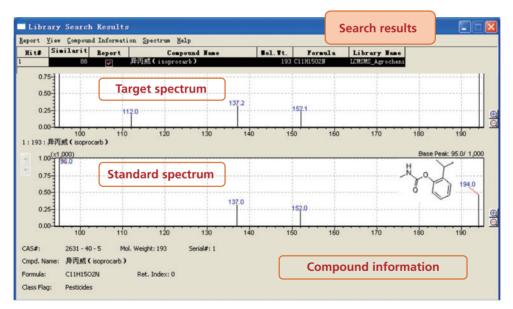


Fig. 4 Library search result of isoprocarb detected in cucumber sample

Determination of 200 Residual Pesticides in Food by Ultra High Performance Liquid Chromatography/Triple Quadrupole Mass Spectrometry

No.	Compound	Compound Concentration (µg/kg)	
1	Aldicarb-sulfone	3.26	72
2	Carbaryl	2.54	91
3	Carbendazim	3.87	100
4	Carbofuran-3-hydroxy	11.90	89
5	Dimethomorph	0.19	67
6	Isoprocarb	3.31	88
7	Methomyl	4.95	99
8	Metolcarb	4.02	82
9	Propamocarb	0.77	88

Table 3 The results of detected pesticides and their similarity score of library searching

4. Conclusions

An LC/MS/MS method has been developed for quantitative and qualitative analysis of 200 pesticides in food sample. Method validation was demonstrated to evaluate instrument capability. The results showed that this method is rapid and reliable. For qualitative confirmation, the MS/MS spectra library search was performed, which made the qualitative results more reliable.

First Edition: June, 2013

Shimadzu Corporation www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. The information contained herein is provided to you "as is" without warranty of any kind including without limitation warrantes as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.