

PO-CON1232E

Qualitative Analysis of Gossypol, Free Gossypol, and Gossypol Derivatives in the Cottonseeds By Electrospray Ionization Tandem Mass Spectrometry

IMSC 2012 PMO-005

Luying ZHOU, Hongyuan HAO, Hengtao DONG, Qiang LI, Jinting YAO and Yuki HASHI Analytical Applications Center, Analytical Instruments Dept., Shimadzu International Trading (Shanghai) Co., Limited, Shanghai 200052, China

Introduction

Free gossypol and in cottonseed is a toxic chemical, which can affect human reproductive function, skin and stomach burning, nausea, vomiting, diarrhea, headache, coma, convulsions and even death due to respiratory, circulatory system failure. Therefore, strict control of the free gossypol and its derivatives is required in deep-processing process of cottonseed. In this Study, according to the MSⁿ Spectra of gossypol, the structures of known and unknown gossypol derivatives were figure out by LCMS-IT-TOF.

Experimental

Analytical Conditions

HPLC (UHPLC system)

The analysis were performed on a Shimadzu UFLCxR-20A system equipped with LC-20ADxR pump, CTO-20AX column oven, SIL-20ACxR auto sampler, DGU-20A5 Degasser and CBM-20A controller.

Mobile phase: A –0.1% formic acid-wate, B – acetonitrile Column : Shimadzu Shim-pack XR-ODS II

(2.0 mm×75 mm, 2.2 μm) Flow rate : 0.2 mL/min Column oven : 40°C Injection volume : 10 μL Gradient program: showed in Table 1

Mass (LCMS-IT-TOF)

Interface: ESI -, Interface voltage: - 4.5 kV, Scan Range: *m/z* 100-1100, Nebulizing gas: N2, 1.5 L/min, Drying gas: N2, 10 L/min, Collision gas: Ar², CDL temperatue: 200°C, Heat block temperatue: 250°C, Detector voltage: 1.70 kV

Time (min)	B.Conc %
0.01	30
5.00	70
10.00	85
13.00	85
15.00	95
18.00	95
18.01	30
25.00	30

Table 1 LC Gradient Program

Results and Discussion

Gossypol Standard Analysis

 $2 \mu g$ / mL of gossypol standard samples analyzed by LCMS-IT-TOF. The retention time of gossypol was 11 min. The chromatogram of gossypol was shown in Fig. 2.

Analysis of Free Gossypol and Its Derivatives in Cottonseed

Fig. 4 Mass Fragmentation of Gossypol

Table 2 Free Gossypol	and Its Derivatives	in Cttonseed	Extracted by C	Chloroform /	ethanol /	isopropyl alcol	าอไ

. .

No.	Retention Time (min)	Formula	lon Type	Theoretical <i>m/z</i>	Measure <i>m/z</i>	Mass Difference (ppm)
1	2.4	C15H10O7	[M-H] ⁻	301.0354	301.0368	4.65
2	3.0	C15H10O6	[M-H] ⁻	285.0405	285.0414	3.16
3	3.8	C18H34O4	[M-H] ⁻	313.2384	313.2390	1.92
4	5.4	C18H34O4	[M-H]⁻	313.2384	313.2394	3.19
5	6.2	C18H36O4	[M-H] ⁻	315.2541	315.2554	4.12
6	6.9	C18H32O3	[M-H]⁻	295.2279	295.2286	2.37
7	7.4	C18H34O3	[M-H] ⁻	297.2435	297.2448	4.37
8	11.8	C16H28O10	[M-H] ⁻	379.1610	379.1623	3.43
9	14.4	C29H28O8	[M-H] ⁻	381.1766	381.1757	-2.36

Table 5 free Cossyptiant to betwartes in ettenseed Extracted by Acctonitine 7 0.2 / phosphore dela						
No.	Retention Time (min)	Formula	lon Type	Theoretical <i>m/z</i>	Measured <i>m/z</i>	Mass Difference (ppm)
1	5.5	C18H34O4	[M-H] ⁻	313.2384	313.2394	3.19
2	5.6	C18H34O4	[M-H] ⁻	313.2384	313.2400	5.11
3	6.3	C18H36O4	[M-H] ⁻	315.2541	315.2547	1.90
4	6.5	C34H47NO6	[M-H] ⁻	564.3331	564.3347	2.84
5	7.0	C18H22O3	[M-H] ⁻	295.2279	295.2281	0.68
6	7.5	C18H24O3	[M-H] ⁻	297.2435	297.2442	2.35
7	7.7	C24H28O	[M-H] ⁻	331.2067	331.2053	-4.2
8	8.9	C19H30N2O3	[M-H] ⁻	333.2184	333.2189	1.50
9	11.1	СзоНзоО8	[M-H]⁻	517.1868	517.1852	-3.09
10	11.9	C16H28O10	[M-H] ⁻	379.1610	379.1602	-2.11
11	14.0	C19H20N2O5	[M-H] ⁻	355.1299	355.1291	-2.25
12	14.6	C16H30O10	[M-H] ⁻	381.1766	381.1766	-1.57

Table 3 Free Gossypol and Its Derivatives in Cttonseed Extracted by Acetonitrile / 0.2% phosphoric acid

Conclusions

According to the MSⁿ spectrums of gossypol and its derivatives, quantity and quality of free gossypol derivatives were different when using different extracting way. The qualitative results of gossypol derivatives get from LCMS-IT-TOF could tell the best way of deep-processing process of cottonseed.

First Edition: September, 2012

Shimadzu Corporation www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

© Shimadzu Corporation, 2012