# Eliminating the Fear Factor

Flame Ionization Detector

Agilent Technologies







# The Flagship GCs from Agilent









Intuvo





### Agilent 8860/8890 Series GC Features – Detectors





- AUX 1 Detector (TOP) can be TCD or FPD+
- AUX 2 Detector (SIDE) can be TCD, FID, or ECD

**YES!** This means you can have up to 4 detectors on your 8890 GC or 3 detectors on your 8860 GC!





### Agilent Intuvo GC Features – Detectors







# **Common GC Detectors**

- Flame Ionization Detector (FID)\*
- Thermal Conductivity Detector (TCD)\*
- Nitrogen-Phosphorous Detector (NPD)\*
- Electron Capture Detector (ECD)
- Flame Photometric Detector (FPD)
- Chemiluminescence Detectors (XCD)
- Mass Selective Detector (MSD)

# Today's topic is the FID!





# **GC Detectors**

Let's focus on the FID







# Flame Ionization Mechanism





The FID is a DESTRUCTIVE, mass sensing detector

- Cations generated in the flame are counted and produce the detector signal
- Analytes that have the greatest number of low oxidation state carbons produce the LARGEST signal

#### **SELECTIVITY**

- The FID will respond to ORGANIC compounds (C-H Bonds)
- There is little or NO response for the • following:
  - Inert Gases
  - H2O
  - **CO2**
  - CO
  - N2
  - 02
  - CS2
  - Heavily halogenated compounds



# H2 / Air = Flame

- Sample is burned producing positively charged ions
- Positive lons are attracted to the negative voltage on the collector
- Collector current is converted to FID output in the Electrometer

# Agilent FID Theory of Operation







# **FID Detector Cutaway**







# **FID Detector Bases**



• 6890/7890 GC -

Capillary optimized FID base OR Packed FID base with capillary adapter included

 Intuvo GC – Capillary optimized FID base only -no packed column capabilities on Intuvo

 8860/8890 GC – Capillary optimized FID base only A packed column adapter is included



Capillary columns only Adaptable fitting

| Detector fitting — |  |
|--------------------|--|
| Adapter            |  |
|                    |  |

Adapters are available for capillary columns or 1/8" Packed Columns

1/4" Packed columns can be installed without an adapter



# Agilent 6890/7890/8860/8890/Intuvo FID Jets









| Adaptable FI     | D Jets – 6890/7890 |                      |  |  |
|------------------|--------------------|----------------------|--|--|
| Jet Type         | Part#              | Jet Tip ID           |  |  |
| Capillary        | 19244-80560        | 0.29 mm<br>0.011 in. |  |  |
| Packed           | 18710-20119        | 0.47 mm<br>0.018 in. |  |  |
| Packed Wide Bore | 18789-80070        | 0.79 mm<br>0.030 in. |  |  |
| High Temp        | G1531-80620        | 0.47 mm<br>0.018 in. |  |  |

| Capillary-Optimized FID Jets –<br>6890/7890 |             |                      |  |
|---------------------------------------------|-------------|----------------------|--|
| Jet Type                                    | Part#       | Jet Tip ID           |  |
| Capillary                                   | G1531-80560 | 0.29 mm<br>0.011 in. |  |
| High Temp                                   | G1531-80620 | 0.47 mm<br>0.018 in. |  |



| Intuvo/8860/8890 FID Jet |             |            |  |  |
|--------------------------|-------------|------------|--|--|
| Jet Type                 | Part#       | Jet Tip ID |  |  |
| Jet                      | G4591-20320 | 0.011 in.  |  |  |



Agilent's NEW FID Jet Design!

Backwards Compatible back to 6890 GC



# FID Setup - Column Installation - FID



 $Column\ Installation - {\tt From\ Troubleshooting\ and\ Maintenance\ Manuals}$ 





# FID – Optimizing Gas Flows for Sensitivity





# Gas Flow Guidelines:

Hydrogen 30-35 ml/minute Carrier + Makeup 30-35 ml/minute Air – 400 ml/minute

Nitrogen is the recommended makeup gas H2-to-Air ratio should be between 8-12%

Total Inert Gas should have ~1:1 ratio to H2



## FID Makeup Gas Modes



#### **Method Editor Menu in Software**

| ALS       | ()<br>Valves | ⊐ <mark>"</mark><br>Inlets | Columns                        | Oven     | Detectors  | Events       | Signals | c |
|-----------|--------------|----------------------------|--------------------------------|----------|------------|--------------|---------|---|
| FID - Fro | nt FID - B   | ack                        |                                |          |            | 1            |         |   |
| FID       |              |                            |                                |          |            |              |         |   |
|           |              |                            |                                | Setpoint | t          | Actual       |         |   |
| 🔲 He      | ater:        |                            |                                | 300 °C   |            | 40.8 °C      |         |   |
| 🔳 Air     | Flow:        |                            |                                | 400 mL   | /min       | -7 mL/min    |         |   |
| 🔲 H2      | Fuel Flow    |                            |                                | 30 mL/   | min        | -0.3 mL/min  |         |   |
| Ma        | akeup Flow   | : (N2)                     |                                | 25 mL/   | min        | -0.4 mL /min |         |   |
| Carrie    | er Gas Flow  | Correction                 |                                |          |            |              |         |   |
| C         | Column Flo   | w: (N2)                    |                                | 0.9538   | 5 mL/min   | 0 mL/min     |         |   |
| 0         | ) Included   | in Fuel Flo                | w                              |          |            |              |         |   |
| C         | ) Included   | in Makeup                  | Flow                           |          |            |              |         |   |
| ۲         | Does not     | affect Mak                 | eup or Fuel Fl                 | ow       |            |              |         |   |
| 🔲 Fla     | ame          |                            |                                |          | $\searrow$ | 0 pA         |         |   |
| FIC       | )            |                            |                                |          |            | $\searrow$   |         |   |
| Su        | btract from  | Signal:                    |                                |          |            |              |         |   |
| (         | (Nothing)    | )                          |                                |          |            |              |         |   |
| 0         | Column       | Compensat<br>Compensat     | tion Curve #1<br>tion Curve #2 |          |            |              |         |   |
|           | , comm       | Componed                   |                                |          |            |              |         |   |

#### AKA: Column + Fuel = Constant

Select if using Hydrogen Carrier The detector sees Constant Hydrog

The detector sees Constant Hydrogen Flow if carrier flow changes.

#### AKA: Column + Makeup = Constant

Best for Column – "Constant Pressure" Mode Makeup is ramped during the run to compensate for dropping carrier flow – Detector sees constant Column + Makeup flow

#### AKA: Constant Makeup & Fuel Flow

Best for "Constant Flow" mode on the Column (He or N2) Makeup Gas and Hydrogen Control are independent of the Carrier and remain constant throughout the analysis



# FID – Tips and Tricks

- It is best to operate the FID at 300°C or hotter But always 20°C hotter than the highest GC Oven Temp
- Optimizing Flows 1:1 ratio of Carrier + Makeup to H2 flow
  - Nitrogen is the recommended makeup gas
- Make sure you check the base of the FID for any chunks of graphite when changing the column or jet to prevent those chunks from getting into the jet and causing a partial blockage
- Check your Lit Offset. Default is 2pA and sometimes with very clean gases the baseline will drop below 2pA causing your GC to think the flame is not it.
- Use the right jet for your application
  - High oven temps, bleeding columns, or clogging jets often try the High Temp FID Jet



🔆 Agilent

Gas Flow Guidelines:

Hydrogen 30-35 ml/minute Carrier + Makeup 30-35 ml/minute (≈1:1 ratio to H2)

Air - 400 ml/minute



Wider opening to help prevent clogging

# FID Troubleshooting



Flame Won't Light - Jet Diagnostic Test – 7890 Series GC



- Set H2 Flow to 75 ml/minute
- Turn the Makeup Gas "OFF"
- Monitor Makeup Gas "Actual Flow"
  - > Low flow reading/minimal change Jet is clear!
  - > High Flow reading/big change indicates Jet Plugging...



## FID Jet Restriction Test – How does it Work?



An increase in the Makeup Gas flow reading indicates pressure backing up from the jet



Agilent

# Jet Diagnostic – Built into 8860/8890/Intuvo GC



Now the GC has the ability to run the Jet Restriction test from the front panel and generate a pass or fail.

|                        | Method            | Sequences         | DA Express       | Diagnostics | Maintenance | 2<br>Logs           | Settings       | Help    |                                                        |
|------------------------|-------------------|-------------------|------------------|-------------|-------------|---------------------|----------------|---------|--------------------------------------------------------|
|                        | Wa                | rnings And Errors | Diagnostic Tests | System Hea  | lth Report  | Detector Evaluation | Reports        | 8       | Front Detector : Jet Restriction Te                    |
| Aux Dete               | ctor 1 (2)        |                   |                  |             |             |                     |                |         |                                                        |
| Jet Restric            | tion Test         |                   |                  |             |             |                     |                |         | Test Passed                                            |
| Leakage (              | Eurrent Test      |                   |                  |             |             |                     |                |         |                                                        |
| Back Inle              | et (5)            |                   |                  |             |             |                     |                |         |                                                        |
| Gas Suppl<br>Leak & Re | ly Pressure Check |                   |                  |             |             |                     |                | <b></b> | Ok will update the tests info in the System Health Rep |
| Pressure I             | Decay Test        |                   |                  |             |             |                     |                |         |                                                        |
| eptum P                | urge Test         |                   |                  |             |             |                     |                |         |                                                        |
| plit Vent              | Restriction Test  |                   |                  |             |             |                     |                |         |                                                        |
| Front Det              | tector (2)        |                   |                  |             |             |                     |                |         | A quick, easy, un-intrusive te                         |
| let Restric            | tion Test         |                   |                  |             |             |                     |                |         | that can be run from the GC                            |
| Leakage (              | Lurrent rest      |                   |                  |             |             |                     |                |         | the browser interface                                  |
| TATUS: REA             | <b>NDY</b>        |                   |                  | <b>^</b>    |             | <u> </u>            |                |         | the browser internace.                                 |
| equence                |                   | Method            |                  | Samp        | le Name     |                     | Est. Remaining |         |                                                        |
|                        |                   |                   |                  |             |             | 4                   | 3.17           |         |                                                        |



# **FID Troubleshooting** Baseline Spiking





#### **Possible Causes:**

- Contamination of the jet, collector, and/or the base by particulates, stationary phase, graphite
  - Clean and Sonicate or Replace the Jet
  - Thoroughly clean the collector and chimney assembly
  - Thoroughly clean the base of the FID especially if ferrule chunks are visible
- Electronic Noise much less likely
  - Vibration
  - Electrical Grounding problems, Power line disturbances, Power Line conditioners
  - Strong RF Interference



#### 20 August 11, 2020 DE.6789930556

# Baseline Drift and Wander

**FID Troubleshooting** 



#### Possible Causes:

- Contaminated/Saturated Gas Supply Traps
- Buildup of high MW sample contamination in the GC Column
- Column Bleed
- Contamination in the Base of the Detector
- Gas Leaks
- Column Fitting Leaks

#### New! Smart Gas Clean Sensor



🔆 Agilent



# **Baseline Evaluation – Intelligent GCs**





- Blank Evaluation allows you to set up expected signal levels at the start and end of the run and confirms they are as expected.
- When you run a blank, your smart GC monitors the blank and returns either a log entry if the blank is not blank, or stops the sequence.



# FID Troubleshooting Measuring Flows



#### Gather your flowmeter and adapter tube first!

- Set oven temp to Ambient (35C)
- Turn off column flow
- Shut off all detector gases
- Turn off FID flame
- Cool detector
- Connect adapter to detector by inserting into FID as far as possible
- Turn on one detector flow at a time allowing the gas to equilibrate in the flowmeter tubing before taking a measurement



A separate adapter (19301-60660) is supplied for the FID. Insert the adapter into the detector exhaust vent as far as possible. You will feel resistance as the adapter O-ring is forced into the detector exhaust vent. Twist and push the adapter during insertion to ensure a good seal.





# **FID** Maintenance





**Rebuilding Kit: G1531-67001** Entire Collector Assembly for Extremely corrosive applications

**Note:** The FID Jet must always be ordered separately

#### Cleaning Kit: G1531-67000 Includes Small Parts:

- Teflon Collector Insulators
- Silicone Rubber Base Gasket
- Ignitor
- Cleaning brushes for Collector
  - Cleaning Wires for Jet





Now let's step through a complete FID Maintenance/Rebuild Procedure together!



# FID Maintenance Procedures Ignitor Replacement





## Disconnect the Ignitor



DE.6789930556

## Remove with 5/16" wrench

Install the new Ignitor with Copper Washer – Tighten with 5/16" wrench





# FID Maintenance Procedures Collector Removal





### Loosen 3-T20 Screws

A common mistake people make is NOT removing the three screws **FIRST.** This makes getting to the jet quite difficult and you can damage the interconnect assembly and spring. Make sure you remove the screws first.



Pull the Collector Assembly straight up



# **FID** Maintenance Procedures **Collector Disassembly and Cleaning**





Remove the collector and **Upper/lower PTFE Insulators** 



**Remove the castle** 



**Remove/replace the** silicone rubber gasket





# FID Maintenance Procedures Jet Removal, Collector Removed







Using a ¼" Nut Driver, Loosen the Jet

Remove the Jet

Be careful not to damage the Interconnect Spring





# FID Maintenance Procedures Check for Graphite Chunks in the Detector Base



#### **Indicator** .....Was the Column hard to remove or to re-install?



Shine a flashlight up From the oven to check For impacted graphite

August 11, 2020

28







Look for graphite chunks falling into the oven



# FID Maintenance Procedures Jet Cleaning or Replacement





Jet sealing surface – if this is Compromised, replace the jet

Agilent recommends replacing the Jet





If the jet is plugged you can clean with a .010" cleaning wire Jet Cleaning Wire (0.010") 9301-0985



# FID Maintenance Procedures Jet Installation









Using a ¼" Nut Driver, Tighten the FID Jet 1/6<sup>th</sup> of A turn past Hand Tight (For a New Jet only)



# FID Maintenance Procedures Re-install the Collector





Position the cleaned or replacement collector directly over the detector base and push straight down. The interconnect spring will "pop" into place!



Tighten 3-T20 Screws evenly and firmly

Re-connect Ignitor electrical cable



# Intelligent GC Features – Self Guided Maintenance

| Meth                                                                                                                                               | nod Sequences                                                                                                                                                   | DA Express Diagnostics                                     | Maintenance             | Logs | Settings     | Help                                 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------|------|--------------|--------------------------------------|--|
| < Overview                                                                                                                                         |                                                                                                                                                                 |                                                            |                         |      | Perform M    | aintenance                           |  |
| <ul> <li>&lt; Overview</li> <li>Front Detector</li> <li>Part</li> <li>Collector asset</li> <li>Ignitor ignition</li> <li>Jet injections</li> </ul> | Front Detector : Replac<br>The instrument will now verify and fit<br>• Reset the Early Maintenance Fee<br>• Restore active method<br>• Reinstall top oven cover | e FID Jet<br>nalize the maintenance task.<br>dback counter |                         |      | Cancel       | Reset All<br>Reset<br>Reset<br>Reset |  |
|                                                                                                                                                    | Back                                                                                                                                                            | Step 12<br>Establish a flow                                | of 12<br>of carrier gas |      | Next         |                                      |  |
| TATUS: MAINTENANCE M                                                                                                                               | IODE<br>Method                                                                                                                                                  | ~                                                          | Sample Name             | Es   | t. Remaining |                                      |  |
|                                                                                                                                                    |                                                                                                                                                                 |                                                            |                         | 8.   | 17           |                                      |  |



These on-board procedures take you through common maintenance operations, guiding you step-by-step, cooling the instrument zones that are necessary, and even updating logs and EMF counters when finished!

These are accessed by way of the "perform maintenance" link in the maintenance tab.







For more information regarding Agilent's Gas Chromatography, please visit the website at: <a href="https://www.agilent.com/en/products/gas-chromatography">https://www.agilent.com/en/products/gas-chromatography</a>

Videos for Simple Maintenance and Theory can be found on the Agilent YouTube page: <a href="https://www.youtube.com/user/agilent/">https://www.youtube.com/user/agilent/</a>

Checkout Agilent Communities where you can get answers and share insights: <a href="https://community.agilent.com/welcome">https://community.agilent.com/welcome</a>



# A Sample of Customer Education Courses – GC



e-Learning

| Agilent University Course Code | Course Name                                                    |
|--------------------------------|----------------------------------------------------------------|
| GC-MULTI-2100e                 | Advanced Operation of the Multi Mode Inlet (MMI)               |
| GC-0GEN-1012s                  | GC Inlets Theory and Operation                                 |
| GC-0GEN-1013s                  | GC Detectors Theory and Operation                              |
| SI-7696-1100s                  | Agilent 7696A Sample Prep WorkBench Operation                  |
| GC-MULTI-1240zs                | Making Productivity Happen: an Agilent GC eLearning Series     |
| SI-7693-1100s                  | Agilent 7693A ALS Basic and Advanced Operation and Maintenance |
| SI-7697-2100fs                 | Running Start for Agilent 7697A Headspace Sampler              |



|                                    | Agilent University Course Code | Course Name                                                                     |
|------------------------------------|--------------------------------|---------------------------------------------------------------------------------|
|                                    | GC-0GEN-2000V2                 | Practical Gas Chromatography – 4 Day (R1915A)                                   |
| GC-7890-2100cV4<br>GC-7890-2200cV3 |                                | Agilent 7890A/B GC and OpenLAB ChemStation Operation – 5 Day (R1778A)           |
|                                    |                                | Agilent 7890A/B GC Maintenance & Troubleshooting – 4 Day (R1914A)               |
|                                    | GC-9000-2101cV3                | Agilent 7890/9000 GC with OpenLAB 2.3 Essential and Advanced Operation – 4 Days |
|                                    | GC-9000-2103c                  | Agilent Intuvo 9000 GC with OpenLAB CDS ChemStation Operation – 4 Days          |
|                                    | GC-8890-2100c                  | Agilent 8890 GC Operation with OpenLAB CDS ChemStation Edition – 4 Days         |

#### Enroll at Agilent University: <u>http://www.agilent.com/crosslab/university/</u>

