

Shimadzu Packed Column for Micro-flow HPLC

Shim-pack

MC PLONAS C8

INSTRUCTION MANUAL

Description

Shim-pack MC PLONAS C8 is a high-speed, high-performance liquid chromatography column based on a new SPP particle design. The SPP particle provides a thin porous shell of high-purity silica surrounding a solid silica core. This particle design exhibits very high column efficiency due to the shallow diffusion paths in the 0.5-micron thick porous shell and the small overall particle size of 2.7-microns. The densely bonded, extensively endcapped dimethyloctyl stationary phase of MC PLONAS C8 provides a stable, reversed-phase packing that can be used for basic, acidic, or neutral compounds.

Column Characteristics

The SPP particle has a surface area of $\sim 135~m^2/g$ and an average pore size of 90 Å. A printed report including the actual test chromatogram and performance results is enclosed with every

column. The SPP particles are 30% to 50% heavier than commercially available totally porous particles due to the density of the solid cores. Therefore, the effective surface area per column is similar to columns packed with totally porous particles having surface areas in the 225-300 m²/g range.

Operation Guidelines

• The direction of flow is marked on the column label. •Running the column in the reversed flow direction is not recommended.

recommended. •A new column contains a mixture of acetonitrile and water. Initial care should be taken to avoid mobile phases that are immiscible with this mixture or could cause a precipitate. •Water and all common organic solvents are compatible with MC PLONAS C8 columns. •MC PLONAS C8 columns are best used at temperatures below 60 °C for maximum column life. •Mobile phase pH for MC PLONAS C8 columns is best maintained in the range of pH = 2 to 9 for maximum column stability.

MC PLONAS Nano/Capillary Columns	
ID (microns)	Max Pressure (bar)
200-500	400

Column Care

To maximize column life, ensure that samples and mobile phases are particle-free. The use of guard columns or an in-line filter with 0.5-micron porosity between the sample injector and the column is highly recommended To remove strongly retained materials from the column, flush the column with very strong solvents such as 100% of the organic component of the mobile phase in use. A mixture (95/5 v/v) of dichloromethane and methanol is often effective at this task. Extreme cases may require the use of very strong solvents such as dimethylformamide (DMF) or dimethylsulfoxide (DMSO). To maximize column life, ensure that samples and mobile phases are

Column Storage

Long-term storage of silica-based, reversed-phase columns is best in 100% acctonitrile. Columns may be safely stored for short periods (up to 3 or 4 days) in most common mobile phases. However, when using buffers, it is best to remove the salts to protect both the column and the HPLC equipment by flushing the column with the same mobile phase without the buffer (e.g., when using 60/40 ACN/buffer, flush the column with 60/40 ACN/H2O) to eliminate any danger from corrosion from the salts while providing rapid re-orviblication of the achume with the original while phase.

equilibration of the column with the original mobile phase. Before storing the column, the end-fittings should be tightly sealed with the end-plugs that came with the column to prevent the packing from drying.

Safety

HPLC columns are for laboratory use only. Not for drug, household, or other use.
Users of HPLC columns should be aware of the toxicity or flammability of the mobile phases chosen for use with the columns. Precautions should be taken to avoid contact and leaks.
HPLC columns should be used in well-ventilated environments to minimize concentration of solvent fumes.

minimize concentration of solvent fumes.

Applications

■ Applications The MC PLONAS C8 bonded phase is nonpolar in nature. It is best utilized with mobile phases that are mixtures of methanol and water or acetonitrile and water. Higher levels of the organic solvent component will typically reduce the retention of the sample compounds. Using elevated temperatures (e.g., 40 – 60 °C) will reduce the viscosity of the mobile phase and allow the use of faster flow rates and lower column pressure for high sample throughput. Gradient elution techniques using 5 -10% organic component as the initial mobile phase often can effect separations of complex sample mixtures in minimal time. MC PLONAS C8 columns are highly suited for the reversed-phase separation of basic, neutral, or acidic compounds. Ionizable compounds, such as acids and bases, are generally best separated with mobile phases buffered at pH of 2 to 3. The use of 20-50 mM buffers is always recommended for optimum results and long-term stability when separating ionizable compounds.

Guidelines for Low-Volume Columns

Guidelines for Low-Volume Columns
 High performance columns with small internal volumes (shorter lengths, internal diameters < 0.5 mm) are increasingly used for high sensitivity and high speed separations, especially with specialty detection systems such as mass spectrometers. These low-volume columns generate peaks having considerably less volume than those eluting from columns of larger dimensions (e.g., 4.6 mm x 150 mm). The efficiency of separations performed in low-volume columns is highly dependent on the HPLC system having components designed to minimize band spreading. All low-volume columns perform best when used with proper attention to the following factors:
 LC/MS – Most nano/capillary columns are utilized with the Mass Spec as the detector. Spray tips should be of low-volume design (preferably ~20nL or less) to minimize band spreading.
 UV Detector – Flow cells should be of low-volume design (preferably ~20nL or less) to minimize band spreading. To properly sense and integrate the often very fast peaks that elute from low-volume columns, the detector response time should be set to the fastest level (~ 0.1 second) and the integration software should sample the detector signal at least 20 points per second.
 Injector – The injection system should be of a low-volume design (nano). The volume of sample injected should set as small as possible. It is highly recommended that a concentration tration approximation of the same should be never unwanted salts.
 Connecting Tubing – The shortest possible lengths of connecting

salts.

salts. •Connecting Tubing – The shortest possible lengths of connecting tubing with narrow internal diameters (at most 50µm ID) should be used to connect the column to the injector and the detector cell. The tubing must have flat ends and should bottom out inside all fittings. Zero-dead-volume fittings should always be used where required. •Peak Retention – As retention is increased, the volume of a peak increases, decreasing the effects on band spreading caused by components of the instrument. •Sample Solvent – For isocratic separations, the sample should be dissolved in the mobile phase. For gradient separations, the sample should be dissolved in the initial mobile phase. **■ Technical Support**

Technical Support

Shim-pack MC PLONAS series columns are manufactured, inspected, packaged and shipped under strict standards of quality control. Should you find any defect in performance, please contact your local Shimadzu representative, who will ensure your complete satisfaction.

We regret that we cannot guarantee the lifetime of columns, also that we cannot accept any claim when performance has deteriorated due to noncompliance with the operation procedures elucidated above, or as a result of normal aging.

* The contents of this instruction sheet are subject to change without notice.