Wiley Spectral Webinar Part I: Spectral Searches with NIST MS Searc 12/27/20

James Little tvasailor@gmail.com
https://littlemsandsailing.wordpress.com/
Kingsport, TN

- Retired* Research Fellow, Eastman Chem. Co.
- ■42 years experience unknown identification
- ■Now Consultant, MS Interpretation Services
- Specialties¹ El GC-MS, LC-MS/MS, Chemical Ionization,⁷ Accurate Mass, Derivatization,^{8,9}MS library management, SciFinder,¹⁰ Chemspider,¹⁰ Surfactant ID,¹¹ NMR, GC-IR, organic synthesis, matrix ionization effects,²¹ etc.

Eastman Chemical Company, Main Site, Kingsport, TN 50 Manufacturing Sites Worldwide, ~14,500 Employees

>50 Mass Specs Networked Worldwide

^{*}https://en.wikipedia.org/wiki/Eastman_Chemical_Company

Wiley Webinar Series on Effective Use of Mass Spectral Libraries

Part I: Spectral Searches² with NIST MS Search

Part II: Structure Searches² with NIST MS Search and Using

MS Interpreter^{2,13-15}

Part III: AMDIS^{3,4,12} (NIST) for Processing EI Mass Spectral Data

Files

Part IV: Advanced NIST Hybrid Search 16-19,22 of EI and MS/MS Spectra

Part V: Creating and Sharing⁵ User EI and MS/MS Libraries

Note:20 Handouts for All Sessions Now Online!
Google Search "little mass spec and sailing"

Table of Contents

	Topic	lide #
•	NIST Mass Spectrometry Software and Wiley Libraries	4
•	Help Files for NIST Search	5
•	General Windows commands/functions	6
•	Customizing the windows	7
•	Tour of NIST Search Program	9
•	Critical parameters for searching library	.18
•	Setting up presearch parameters	.19
•	Primary Libraries of EI Spectra <u>and</u> Associated Structures	.21
•	Other EI Libraries: Wiley/NIST Combined and specialty	.22
•	Selecting the libraries used for spectral searches	.23
•	Select the libraries used for similar structure searches	.24
•	Selecting limits to avoid high match factors for partial spectra	.25
•	Constraints applied to hit list after the list is determined	.26
-	Saving setup of standard search parameters	.27
•	Searching demonstration/ $ au ip$ No. Synonyms and databases	.28
-	Reverse match for mixtures versus standard match	.29
•	Display of related species	.32
•	InChIKey field link to PubChem on web	.33
-	Updating indices in older libraries	.34
•	Library spectra $\mathit{m/z}$ values by nominal not exact mass	.35
•	Retention indices (Kovat) determined by users in AMDIS	.37
•	Different derivative displays	.38
•	Using NIST software to obtain proposed nominal MW and substructures	.39
•	Webinar references	.40
	Acknowledgements	41

NIST Mass Spectrometry Software and Wiley Libraries

- •Free software suite for processing mass spectral data
- Supplied with the purchased commercial libraries or by instrument manufacturers
- Utilized with Wiley Libraries for qualitative mass spectral analyses
- ■Both GC-EI and LC-MS unknown identification
- ■Import data^{2,6} from variety of instrument manufacturers
- Searches by spectrum, structure, name, CAS No., peaks, MW, MF, etc.
- AMDIS^{3,4,12} available for processing mass spectral files (*vendor and netCDF formats*)
- ■MS Interpreter^{2,13-15} for correlating molecular substructures to ions
- Structure Export and Import using vendor Drawing Packages²

Help Files for NIST Search

-"Hover" over Program Icon with mouse and function description displayed

NIST Software in General is "Windows Compliant"

- -left click (LMB) to select an item, double LMB on that item to perform operation
- -right click (RMB) in area or item to see operations that can be performed or to change properties of window
- -LMB on first item and last item to select group while holding shift key
- -LMB to select/deselect individual items while holding Ctrl button
- -use up and down arrows on keyboard to step between entries
- -some NIST windows such as librarian have no delete button to delete ions, *must* use delete key on keyboard!
- -control a (select all), control x (delete selected), control c (copy); control v (paste)
- -control k copies entries into windows in tab-separated text format, e.g., paste into Excel
- -F1 MS Search help
- -F9 send spectrum to MS Interpreter
- -LMB and zoom mass spectral windows, RMB then LMB to zoom out

Tip 3: LMB and **drag** to rearrange order of column headers

#	Lib.	Name	▼ Match	Prob. (%)	RI	R.Matoh	Syn	DBs	^
⊕ 1	R	Undecane	955	44.8	1100	955	4	8	
<u> </u>	М	Undecane	945	44.8	1100	945	4	8	Ξ
⊞ 3	R	Undecane	944	44.8	1100	958	4	8	=
4	w1	Undecane	937	44.8		955	11	0	п
5	w1	Undecane	933	44.8		950	11	0	
6	w1	Undecane	932	44.8		939	11	0	

- -LMB on column of interest
- -Can sort in lower value first or higher
- -Will show use in mixtures in example later in presentation

Tip 1: When reviewing search results, use up and down arrows on keyboard to quickly step through results!

Tip 2: When viewing structures in MS Interpreter, use left and right arrows on keyboard to quickly review results!

Customizing the Windows

-place cursor over any bar between (top or side) windows and then LMB and drag to change the size of a window or make window so small it essentially disappears.

Customizing the Windows (continued)

-RMB in display windows then **LMB** to "Change <u>Splitter Orientation"</u>

Tour of NIST Search Program (Top Links)

Tour of NIST Search Program (continued) (Top Links)

Tour of NIST Search Program (continued) (Top Links)

Lib. Match R.Match Syn DBs Name Acetone Acetone -Can toggle viewing replicates by Acetone "left-clicking" on + or – box here Acetone Acetone or icon on toolbar shown above Acetone Acetone Acetone

Tour of NIST Search Program (continued) Icons in Lib Search Window

- 1. **LMB** to start search or **double LMB** on entry in spec list window
- 2. **LMB** to do structure search
- 3. Critical search criteria for structure and spectra search
- 4. Search results stored and ability to clear list
- 5. "Show/Don't Show" replicate entries in NIST library
- 6. Only show best hit of entry with same CAS number, minimizes looking at redundant entries in search window
- 7. View Hit List Search Options (see details next slide)
- 8. After search, shows sub-structural information based on search results

Tour of NIST Search Program

View of Hit List Normal Search Options Utilized

- LMB the "View Hit List Search Options"
- 2. See details of the last search performed
- 3. Also, an abbreviated description of the last search noted at top of NIST search window
- 4. Furthermore, at the **bottom** of the screen, *respectively* displayed, are the types of searches that will be performed and the type of results currently displayed

Tour of NIST Search Program (continued) (General Window in Lib Search View)

- 1. Spec list window for import of spectra and structures from other programs
- 2. Histogram, Statistics on search
- 3. Hits list, step through by *LMB* then *up* and *down arrows on keyboard*
- 4. Unknown spectra and info
- 5. Comparison of unknown to selected hit result, *many different display options* with tabs at bottom left of window
- 6. Spectrum of hit and other associated information
- 7. Accessing other windows and associated functions

Tour of NIST Search Program (continued) Tabs for Other Functions Accessed at Bottom of Main Library Page (Many Detailed Discussions in Future Webinars)

- 1. Lib Search-main window for searching spectra and structures
- 2. Other Search-search by CAS, MW, ID no., partial name, MF, etc.
- 3. Names-search by name, often 2-100 names for same compounds, e.g., check out *aspirin on next slide*
- 4. Compare-Window used to compare spectra, also can display best hits from search
- 5. Librarian-window used to edit spectra, correlate spectra with structure, create user libraries, type in spectra manually, etc.

Tour of NIST Search Program (continued) Name Search Tab

- Toggle: letters only or letters/numbers
- Search one library at a time
- Replicates, derivatives, isotopes, stereoisomers in pull-down menu

Tip: Difficult to see components in pull down menu, thus RMB on "Aspirin" in name list, then either **Send To/ Spec List** and search *or* Lib Search directly; See improved display in Library tab on next page

Tour of NIST Search Program (continued) Improved View in Library Tab Compared to Name Tab

-increase from just displaying replicates in both views to including isotopes, stereoisomers, and derivatives as explained in slide 32

Limited view for aspirin in Name Tab

Improved view after sending to Spec List and searching in library window

Critical Parameters for Searching Libraries

Presearch Default-best setting for optimum results

Presearch off-skips presearch, >1 minute per search

Constraints-results filtered **after** Final Search

Setting Up Presearch Parameters <u>Critical Step</u>

Two ways to access:

Setting Up Presearch Parameters Critical Stop

Critical Step

> LMB on icon to open Library Search Options window

Primary Libraries of El Spectra <u>and</u> Associated Structures

Wiley: >815k entries

NIST: >350K entries

User Libraries: *e.g.* Eastman, >50K entries, automatically updated *nightly*⁵

Which Ones to Search? (My opinion, all >1,100K excluding w12leg)

- -w12main: best spectra for component
- -w12rep: replicates (spectra can be instrument dependent)
- -w12lq: lower quality, <4 ions per spectrum
- -w12leg: spectra once present in main and rep, but removed for various reasons
- -main (NIST): one best entry selected (subjective) for component
- -rep (NIST): replicates for main spectrum
- -user libraries: individual's or company's personal libraries

Other El Libraries: Wiley/NIST Combined and Specialty

Combined Wiley/NIST (>1.1 M spectra)

Wiley Specialty (>91 K spectra):

- ➤ Lipids (430)
- ➤ Pesticides from Prof. Mondello (1,300)
- ➤ Designer Drugs (28,032)
- ➤ Fragrances (3,462)
- ➤ Drugs, Poisons, Pesticides, Pollutants, and Their Metabolites (10,430)
- ➤ FAMES: Fatty Acid Methyl Esters (240)
- ➤ Physiologically Active Substances: Drugs, Steroid Hormones, and Endocrine Disruptors (4,182)
- ➤ Pesticides from Rolf Kuhnle (1,238)
- ➤ Androgens, Estrogens, Steroids and Derivatives (3,722)
- ➤ Organic Compounds for Drug Discovery/Combinatorial Synthesis (37,055)
- ➤ Petrochemicals and Biomarkers (1,100)
- ➤ Online Search Wiley and NIST Libraries (Check for Inclusion, free) https://www.sisweb.com/software/ms/nistsearch.htm

Select the Libraries Used for Spectral Searches

- •LMB on the Libraries tab and make sure Spectrum Search is selected
- Select the group of libraries to be searched
- >>Add>> all libraries to be searched
- Order of libraries normally only important in Other Search Tab which return maximum no. of hits

Select the Libraries Used for Similar Structure Searches

- •Similar structure searches are driven by libraries in Structure Search
- •LMB on the Libraries tab and make sure Structure Search is selected
- Select the group of libraries to be searched by Similar Structure
- >>Add>> all libraries to be searched
- Order of libraries normally only important in Other Search Tab which return maximum no. of hits

Selecting Limits to Avoid High Match Factors for Partial Spectra in Libraries

- > LMB on the Limits tab
- ➤ Select *Apply Limits*
- >Enter the value for "Minimum m/z"
- ➤ This is necessary to force the search to compare the whole spectrum when calculating a match factor
- Library spectra with only a few ions are minimized in the search results by using limits

Constraints Applied to Hit List After the List Is Determined

1. I very seldom use these to refine the search results

2. However, very useful when finding spectra in the libraries using **Sequential Method** under

Other Search Tab

Saving Setup of Standard Search Parameters

- ➤ After all the parameters are setup for search, save them for future use
- >Example setup below was named *ClassConfig*
- ➤In the future, this can be "re-called" by selecting it from this menu

Searching Demonstration

-Example searches demonstrated in live presentation

Tip2: When viewing results of search, consider adding **No. Synonyms** and **No. of Other Databases** to columns displayed.

The number of associated synonyms and databases makes a candidate more likely to be correct structure in many cases!

Reverse Match for Mixtures Versus Standard Match

- -Also "Head to Head" display of unknown versus best hit shows many additional ions in unknown
- -can LMB on R. Match (Reverse Header) to resort results
- -Reverse match factor is calculated disregarding any peaks in the unknown that not in the library spectrum
- -Make sure "Best Matching Only" is not selected on toolbar!

Reverse Match for Mixtures Versus Standard Match (continued)

- -The top Reverse match is 873 for the dicyclohexylamine
- -The next highest is 849 for methyl undecanoate
- -These are the correct identities for the components in the mixture

Reverse Match for Mixtures Versus Standard Match (continued)

- -One can switch the display of unknown versus the selected hit to the "subtraction" mode (1)
- -Thus the dicyclohexylamine result spectrum is subtracted from the unknown spectrum
- -The difference or subtracted spectrum, using a "right-click," can then be "Send to" "Spec List" window or Library Search (2)
- -This subtracted spectrum can then be searched again (3) to yield a good "Match" for methyl undecanoate from SpecList

Display of Related Species

-Determines if replicates, isotopically labeled species, stereoisomers, and/or derivatives displayed with search results

-Can toggle by "left-clicking" on + or – box

-Also affects Names Search Display

InChlKey Field Link to PubChem on Web

^{*} https://en.wikipedia.org/wiki/International Chemical Identifier

- -InChlKey is ASCII "hashed" representation of structure* and is searchable
- -Double *LMB* on *any* InChIKey in NIST software and you will be taken to PubChem Web Page on internet

Selecting PubChem Options:

Updating Indices in Older Libraries

-Upgrades older versions of libraries to newer functions such as hybrid search, structures InChlKey, etc.

Library Spectra *m/z* Values by Nominal *not* Exact Mass

- -Select "Spectrum Import Options"
- -Spectra in NIST library are corrected to nominal mass*
- -Use *this option* to "Multiply *m/z* in imported spectra by.."
- -More problematic for compounds MW>500, see examples *next* slide
- -Negative mass defect a problem for multi brominated and chlorinated, species
- -Positive mass defect a problem for compounds with large number of hydrogens

^{*} https://en.wikipedia.org/wiki/Mass (mass spectrometry)

Nominal Molecular Weight Correction Examples

- -NIST rounds up above 0.5, e.g. 536.5 converted to 537
- -Some data systems round **before** exporting to NIST!

- -Nominal MW needs to be *increased* to 950 when importing for proper searching!
- -Library "thinks" bromine has MW of 79, mass spec "knows" MW is 78.9!
- -Correct by multiplying all m/z values by 1.00087
- -Problem only with higher MW species

Name: Eicosanoic acid, hexadecyl ester Formula: C36H72O2 MW: 536 Exact Mass: 536.55323 CAS#:

- -Nominal MW needs to be *decreased* to 536 when importing for proper searching!
- -Library "thinks" hydrogen has MW of 1, mass spec "knows" MW is 1.0078!
- -Correct by multiplying observed *all m/z* values by 0.99888
- -Problem only with higher MW species

Retention Indices (Kovat) Determined by Users in AMDIS

```
Name: Cholesterol
Formula: C27H46O
MW: 386 Exact Mass: 386.354866 CAS#: 57-88-5 NIST#: 332884 ID#: 7754 DB: mainlib
Other DBs: Fine, TSCA, RTECS, EPA, USP, HODOC, NIH, EINECS
Compound ID: 0
Compound Hash
Contributor: NIST Mass Spectrometry Data Center
Related CAS#; 218965-24-3; 262418-13-3; 378185-03-6; 676322-57-9; 793670-51-6; 80356-14-5; 80356-33-8; 849593-11-9
InChlKev: HVYWMOMLDIMFJA-DPAQBDIFSA-N Non-stereo
10 largest peaks:
   43 999 | 55 886 | 57 744 | 105 686 | 386 681
 107 661 | 95 610 | 81 582 | 91 567 | 41 559 |
Sunonums:
1.Cholest-5-en-3-ol (3β)-; 2.(-)-Cholesterol; 3.Cholest-5-en-3β-ol; 4.Cholesterin; 5.Cholesterol base H; 6.Cholesteryl alcohol;
7.Cordulan: 8.Dusoline: 9.Dusoran: 10.Dvthol: 11.Hvdrocerin: 12.Kathro: 13.Lanol: 14.Nimco cholesterol base H: 15.Nimco
cholesterol base No. 712; 16. Provitamin D; 17. Tegolan; 18. Wool alcohols B. P.; 19.3β-Hydroxycholest-5-ene; 20.5-Cholesten-
38-ol; 21. Cholestrin; 22. Cholestrol; 23. Super hartolan; 24.5,6-Cholesten-38-ol; 25. DELTA.5-Cholesten-3-β-ol; 26. Cholesterine;
27. Dastar; 28. Fancol CH; 29. Cholest-5-en-3-ol, (38)-#; 30. Cholest-5-en-3beta-ol; 31. Lidinite; 32. NSC 8798;
Experimental RI median±deviation (#data)
Semi-standard non-polar: 3087±12 (2)
Standard non-polar:
                       3052±29 (32)
Estimated non-polar retention index (n-alkane scale):
Confidence interval (Low reliability): 174(50%) 752(95%) iu
Retention index.
1. Value: 3098 iu
Column Type: Capillary
Column Class: Standard non-polar
Active Phase: DB-1
Column Length: 30 m
Carrier Gas: Helium
Column Diameter: 0.25 mm.
Phase Thickness: 0.25 um
Data Type: Normal alkane RI
Program Type: Ramp
Start T: 50 C
End T: 250 C
Heat Rate: 10 K/min
Source: Steiger, S.; Haberer, W.; Muller, J.K., Social environment determines degree of chemical signalling
[Supplemented matherials], Biol. Lett., 7[6], 2011, 822-824.
2. Value: 3098 iu
Column Type: Capillary
Column Class: Semi-standard non-polar
Data Type: Normal alkane RI
Program Type: Ramp
Source: Steiger, S.; Peschke, K.; Francke, W.; Muller, J.K., The smell of parents: breeding status influences
cuticular hydrocarbon pattern in the burying beetle Nicrophorus vespilloides, Proc. Roy. Soc. B, 274, 2007,
2211-2220.
3. Value: 3075 iu.
Column Tune: Capillaru
```

- -NIST libraries have Retention/Kovat (RI) indices *
- -Converts retention times into **system-independent** constants using a hydrocarbon calibration mixture
- -RI's determined in NIST AMDIS software^{3,4,12}
- -Limit search, see Library Search Options/RI(GC) tab
- -Additional orthogonal information for characterizing compounds
- -MS Search results list methods and conditions for determination
- -Standard display is top two to avoid "slowing" the display of search results
- -Can expand to see **All** for a library entry, display First 0, 1..., or uncheck box to see none

^{*} https://en.wikipedia.org/wiki/Kovats retention index

Different Derivative Displays (Affects Only Search Results Displays)

Using NIST Software to Obtain Proposed Nominal MW and Substructural Information

- 1. First Search spectrum in "Simple" Identity mode
- 2. Software uses components in hit list to determine probable nominal MW and substructural information
- 3. LMB on "View substructure Information"
- 4. Scroll through various windows in "Substructure Information" window

Webinar References (Internet Links)

- 1. James Little Mass Spectral Resource Website
- 2. NIST Search Software Detailed Manual
- 3. AMDIS Program for Data Processing Detailed Manual
- 4. Basic Instructions for Using AMDIS with NIST Search
- 5. Nightly Automatic Update of Users' Libraries
- 6. <u>Using NIST Search from Instrument Manufacturers' Software</u>
- 7. Chemical Ionization for MW Determination
- 8. <u>Trimethylsilyl Derivatives for GC-MS</u>
- 9. <u>Methyl Ester Derivatives for GC-MS</u>
- 10. SciFinder/ChemSpider and Accurate Mass LC-MS Data for Unknown ID's
- 11. Surfactant Identification
- 12. QuickGuide.rtf Supplied with AMDIS Software Installation for Retention Indices
- 13. New Developments in the Modeling of Ion Fragmentation by MS Interpreter Software
- 14. Enhancements to NIST MS Interpreter for Modeling High Mass Accuracy Tandem Mass Spectra
- 15. An Automated Method for Verifying Structure-Spectral Consistency Based on Ion Thermochemistry
- 16. <u>Combining Fragment-Ion and Neutral-Loss Matching during Mass Spectral Library Searching: A New General Purpose Algorithm Applicable to Illicit Drug Identification</u>
- 17. <u>The Hybrid Search: A Mass Spectral Library Search Method for Discovery of Modifications in Proteomics</u>
- 18. <u>Hybrid Search: A Method for Identifying Metabolites Absent from Tandem Mass Spectrometry Libraries</u>
- 19. <u>Structure Annotation of All Mass Spectra in Untargeted Metabolomics</u>
- 20. Most Current Handouts for Webinar Series, Parts I-V
- 21. <u>Lipid Matrix Ionization Effects in LC-MS</u>
- 22. Mass Spectral Similarity Mapping in Hybrid Searches Applied to Fentanyl Analogs

Acknowledgements

Wiley Webinar Production:

- Ryan McNaughton
- Kristen Makoski

Technical Advice:

- David Sparkman
- Stephen Stein