MS Tips

Analysis of photo polymerization initiator in UV light curing adhesives by GC/TOFMS

A UV and visible light curing adhesive is a liquid composed of monomer, oligomer, initiator and additives. It cures layers in a short period of time under the influence of light.

In this report, a photo polymerization initiator in a UV light curing adhesive was analyzed by electron ionization (EI) and field ionization (FI).

<Sample and measurement conditions>

Sample UV light curing adhesive
GC condition

GC:	Agilent 6890N
Column:	ZB- $5 \mathrm{~ms}, 30 \mathrm{~m} \times 0.25 \mathrm{~mm}$ I.D., $0.25 \mu \mathrm{~m}$
Oven Temp:	$40^{\circ} \mathrm{C}(1 \mathrm{~min}) \rightarrow 10^{\circ} \mathrm{C} / \mathrm{min} \rightarrow 280^{\circ} \mathrm{C}(5 \mathrm{~min})$
Injection Temp.:	$280^{\circ} \mathrm{C}$
Injection mode:	$\mathrm{Split}(50: 1)$ [for El+], Splitless [for FI+]
Injection volume:	$1.0 \mu \mathrm{~L}$
Carrier gas:	$\mathrm{He}(1.0 \mathrm{~mL} / \mathrm{min}:$ constant flow mode $)$

MS conditions
MS: JMS-T100GC "AccuTOF GC"
Ionization mode : El+ and FI+
For $\mathrm{El}(+)$: Ionization voltage: 70 V
Ionization current: $300 \mu \mathrm{~A}$
Chamber Temp.: $\quad 280^{\circ} \mathrm{C}$
For $\mathrm{Fl}(+)$: Cathode voltage : -10 kV
Emitter current : 0 mA
Acquired m / z range: $\mathrm{m} / \mathrm{z} 35-500$

Recording interval: 0.6 sec
<Result>
The TIC is shown in Fig.1. Many components are observed in the TIC in both EI+ and FI+. The unreacted photo polymerization initiator (R.T. 27.9 min .) was determined by using accurate mass measurement conditions in El and FI.

Fig. 1 TIC <Upper: EI(+), Lower: FI+>

Fig. 2 El+ mass spectrum

Fig. 3 Fl+ mass spectrum

Table1 Elemental composition determination by El+

Observed m / z	Calcurated m / z	Error (mDa)	Estimated mormula	U.S.
119.08526	119.08608	-0.82	12 C 91 H 11	4.5
147.08013	147.08099	-0.86	12 C 101 H 11160	5.5
201.04750	201.04693	0.58	12 C 121 H 1016031 P	9.5
	201.04920	-1.70	12 C 21 H 2116 O 232 P 4	-1.5

Table2 Elemental composition determination by FI+

Observed m / z	Calcurated m / z	Error (mDa)	Estimated mormula	U.S.
348.12829	348.12792	0.37	12 C 221 H 2116 O 231 P	14.0
	348.13019	-1.90	12 C 121 H 3216 O 331 P 4	3.0
	348.12555	2.74	12 C 151 H 26160531 P 2	6.0
	348.13256	-4.27	12 C 191 H 2732 P 3	11.0

An El mass spectrum and a FI+ mass spectrum are shown in Fig. 2 and Fig.3. The indicated ions (red) are selected for elemental composition determination. The results for each spectrum are shown in Table 1 and Table 2.

Ions with m/z 119, 147 and 201 are mainly observed by El+. The result of the elemental composition determination for these ions, shows that only one ion formula can be estimated for $m / z 119$ and 147. On the other hand, 2 different ion formula are estimated for $m / z 201$. Finally, ion formula for $\mathrm{m} / \mathrm{z} 201$ could be estimated as $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{OP}$ according to the mass difference, the elements present and its number of elements. Also, the ion at m/z 201 was a fragment ion because the unsaturation number is half-integer.
Ions at m/z 147, 201 and 348 are mainly observed in FI+. Since ions at $\mathrm{m} / \mathrm{z} 147$ and 201 are the same in El+, an elemental composition for ion at $\mathrm{m} / \mathrm{z} 348$ was estimated. There are 4 candidates within 5 mDa of mass difference but $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{O}_{2} \mathrm{P}$ was estimated, based on the mass difference and the number of phosphor and oxygen atoms. The unsaturation number of this formula is integer so, this ion is determined as molecular ion. Since the unsaturation number is 14 , it's possible to consider more than 2 benzene rings are included in the structure. The final estimated structure is shown in Fig. 4.

JMS-T100GC "AccuTOF GC" obtains accurate m/z values very easily in El+ and also in FI+. This capability is very helpful for structure analysis for unknown compounds.

Fig. 4 Estimated structure

