

Neoma Multicollector ICP-MS Illuminating the edge of discovery

Cup configurations

A selection of Neoma cup configurations for solution analysis

	L5	L4	L3	L2	L1	C	H1	H2	H3	H4	H5
Li		⁶ Li								⁷ Li	
B			¹⁰ B						¹¹ B		
Mg/Si	²⁴ Mg		²⁵ Mg		²⁶ Mg	²⁷ Al	²⁸ Si		²⁹ Si		³⁰ Si
Si/S	²⁸ Si		²⁹ Si		³⁰ Si	³¹ P	³² S		³³ S		³⁴ S
K			³⁹ Ar			⁴⁰ K			⁴¹ K		
Ca			⁴² Ca	⁴³ Ca	⁴⁴ Ca	⁴⁵ Sc	⁴⁶ Ca	⁴⁷ Ti	⁴⁸ Ca		⁴⁹ Ti
Ti	⁴³ Ca	⁴⁴ Ca	⁴⁶ Ti		⁴⁷ Ti	⁴⁸ Ti	⁴⁹ Ti		⁵⁰ Ti	⁵¹ V	⁵³ Cr
V			⁴⁷ Ti		⁴⁹ Ti	⁵⁰ V	⁵¹ V	⁵² Cr	⁵³ Cr		
Cr	⁴⁷ Ti		⁴⁹ Ti	⁵⁰ Cr	⁵¹ V	⁵² Cr	⁵³ Cr	⁵⁴ Cr	⁵⁶ Fe	⁵⁷ Fe	
Fe	⁵² Cr	⁵³ Cr	⁵⁴ Fe	⁵⁶ Fe	⁵⁷ Fe	⁵⁸ Ni	⁶⁰ Ni	⁶¹ Ni	⁶² Ni	⁶³ Cu	⁶⁵ Cu
Ni	⁵⁷ Fe		⁵⁸ Ni	⁶⁰ Ni	⁶¹ Ni	⁶² Ni	⁶³ Cu	⁶⁴ Ni	⁶⁵ Cu	⁶⁶ Zn	⁶⁷ Zn
Cu/Zn	⁶⁰ Ni	⁶² Ni	⁶³ Cu	⁶⁴ Ni	⁶⁵ Cu	⁶⁶ Zn	⁶⁷ Zn	⁶⁸ Zn	⁶⁹ Ga	⁷⁰ Zn	⁷² Ge
Sr			⁸² Kr	⁸³ Kr	⁸⁴ Sr	⁸⁵ Rb	⁸⁶ Sr	⁸⁷ Sr	⁸⁸ Sr		
Mo	⁹⁰ Zr	⁹¹ Zr	⁹² Mo	⁹⁴ Mo	⁹⁵ Mo	⁹⁶ Mo	⁹⁷ Mo	⁹⁸ Mo	⁹⁹ Ru	¹⁰⁰ Mo	¹⁰¹ Ru
Pd	¹⁰¹ Ru	¹⁰² Pd	¹⁰⁴ Pd	¹⁰⁵ Pd	¹⁰⁶ Pd	¹⁰⁷ Ag	¹⁰⁸ Pd	¹⁰⁹ Ag	¹¹⁰ Pd	¹¹¹ Cd	
Cd	¹⁰⁵ Pd	¹⁰⁶ Cd	¹⁰⁸ Cd	¹¹⁰ Cd	¹¹¹ Cd	¹¹² Cd	¹¹³ Cd	¹¹⁴ Cd	¹¹⁵ In	¹¹⁶ Cd	¹¹⁷ Sn
Sn	¹¹¹ Cd	¹¹² Sn	¹¹³ In	¹¹⁴ Sn	¹¹⁵ Sn	¹¹⁶ Sn	¹¹⁷ Sn	¹¹⁸ Sn	¹¹⁹ Sn	¹²⁰ Sn	¹²² Sn
Ba	¹²⁵ Te	¹³⁰ Ba	¹³¹ Xe	¹³² Ba	¹³⁴ Ba	¹³⁵ Ba	¹³⁶ Ba	¹³⁷ Ba	¹³⁸ Ba	¹³⁹ La	¹⁴⁰ Ce
Nd	¹⁴⁰ Ce	¹⁴² Nd	¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁷ Sm	¹⁴⁸ Nd	¹⁴⁹ Sm	¹⁵⁰ Nd	¹⁵¹ Eu
Hf	¹⁷¹ Yb	¹⁷³ Yb	¹⁷⁴ Hf	¹⁷⁵ Lu	¹⁷⁶ Hf	¹⁷⁷ Hf	¹⁷⁸ Hf	¹⁷⁹ Hf	¹⁸⁰ Hf	¹⁸¹ Ta	¹⁸² W
W	¹⁷⁸ Hf	¹⁷⁹ Hf	¹⁸⁰ W	¹⁸¹ Ta	¹⁸² W	¹⁸³ W	¹⁸⁴ W	¹⁸⁵ Re	¹⁸⁶ W	¹⁸⁷ Re	¹⁸⁸ Os
Os	¹⁸³ W	¹⁸⁴ Os	¹⁸⁵ Re	¹⁸⁶ Os	¹⁸⁷ Os	¹⁸⁸ Os	¹⁸⁹ Os	¹⁹⁰ Os	¹⁹² Os	¹⁹⁴ Pt	¹⁹⁵ Pt
Hg	¹⁹⁵ Pt	¹⁹⁶ Hg	¹⁹⁸ Hg	¹⁹⁹ Hg	²⁰⁰ Hg	²⁰¹ Hg	²⁰² Hg	²⁰³ Ti	²⁰⁴ Hg	²⁰⁵ Ti	²⁰⁸ Pb
Pb		²⁰¹ Hg	²⁰² Hg	²⁰³ Ti	²⁰⁴ Pb	²⁰⁵ Ti	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb		
Pb/U	²⁰² Hg	²⁰⁴ Pb	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb				²³² Th	²³⁵ U	²³⁸ U
Th						²³⁰ Th	²³² Th		²³⁴ U	²³⁵ U	²³⁸ U
U				²³⁴ U	²³⁵ U	²³⁶ U		²³⁸ U			

A selection of Neoma cup configurations for laser ablation analysis

	L5	L4	L3	L2	L1	C	H1	H2	H3	H4	H5
Li		⁶ Li								⁷ Li	
B				¹⁰ B						¹¹ B	
Mg/Si	²⁴ Mg		²⁵ Mg		²⁶ Mg	²⁷ Al	²⁸ Si		²⁹ Si		³⁰ Si
Ca		⁴² Ca	⁴³ Ca	⁸⁷ Sr ⁺⁺	⁴⁴ Ca	⁴⁵ Sc	⁴⁶ Ca	⁴⁷ Ti	⁴⁸ Ca		⁴⁹ Ti
Ti	⁸⁷ Sr ⁺⁺	⁴⁴ Ca	⁹¹ Zr ⁺⁺	⁴⁶ Ti	⁴⁷ Ti	⁴⁸ Ti	⁴⁹ Ti		⁵⁰ Ti	⁵¹ V	⁵³ Cr
Cr	⁹⁷ Mo ⁺⁺	⁴⁹ Ti	⁵⁰ Cr	¹⁰¹ Ru ⁺⁺	⁵¹ V	⁵² Cr	¹⁰⁵ Pd ⁺⁺	⁵³ Cr	⁵⁴ Cr	⁵⁶ Fe	⁵⁷ Fe
Fe	¹⁰¹ Ru ⁺⁺	⁵² Cr	¹⁰⁵ Pd ⁺⁺	⁵³ Cr	⁵⁴ Fe	¹¹¹ Cd ⁺⁺	⁵⁶ Fe	⁵⁷ Fe	⁵⁸ Ni	¹¹⁷ Sn ⁺⁺	⁶⁰ Ni
Ni	⁵⁷ Fe	⁵⁸ Ni	¹¹⁷ Sn ⁺⁺	⁶⁰ Ni	⁶¹ Ni	⁶² Ni	¹²⁵ Te ⁺⁺	⁶³ Cu	⁶⁴ Ni	⁶⁵ Cu	⁶⁶ Zn
Cu/Zn	⁶² Ni	¹²⁵ Te ⁺⁺	⁶³ Cu	⁶⁴ Ni	¹²⁹ Xe ⁺⁺	⁶⁵ Cu	⁶⁶ Zn	⁶⁷ Zn	⁶⁸ Zn	⁷⁰ Zn	⁷² Ge
Sr	⁸² Kr	⁸³ Kr	¹⁶⁷ Er ⁺⁺	⁸⁴ Sr	⁸⁵ Rb	¹⁷¹ Yb ⁺⁺	⁸⁶ Sr	¹⁷³ Yb ⁺⁺	⁸⁷ Sr	⁸⁸ Sr	¹⁷⁷ Hf ⁺⁺
Nd	¹⁴⁰ Ce	¹⁴² Nd	¹⁴³ Nd	¹⁴⁴ Nd	¹⁴⁵ Nd	¹⁴⁶ Nd	¹⁴⁷ Sm	¹⁴⁸ Nd	¹⁴⁹ Sm	¹⁵⁰ Nd	¹⁴² Nd ¹⁶ O
Hf	¹⁷¹ Yb	¹⁷³ Yb	¹⁷⁴ Hf	¹⁷⁵ Lu	¹⁷⁶ Hf	¹⁷⁷ Hf	¹⁷⁸ Hf	¹⁷⁹ Hf	¹⁸⁰ Hf	¹⁸¹ Ta	¹⁸² W
W	¹⁷⁸ Hf	¹⁷⁹ Hf	¹⁸⁰ W	¹⁸¹ Ta	¹⁸² W	¹⁸³ W	¹⁸⁴ W	¹⁸⁵ Re	¹⁸⁶ W	¹⁸⁷ Re	¹⁸⁸ Os
Os	¹⁸³ W	¹⁸⁴ Os	¹⁸⁵ Re	¹⁸⁶ Os	¹⁸⁷ Os	¹⁸⁸ Os	¹⁸⁹ Os	¹⁹⁰ Os	¹⁹² Os	¹⁹⁴ PT	¹⁹⁵ Pt
Hg	¹⁹⁵ Pt	¹⁹⁶ Hg	¹⁹⁸ Hg	¹⁹⁹ Hg	²⁰⁰ Hg	²⁰¹ Hg	²⁰² Hg	²⁰³ Ti	²⁰⁴ Hg	²⁰⁵ Ti	²⁰⁸ Pb
Pb		²⁰¹ Hg	²⁰² Hg	²⁰³ Tl	²⁰⁴ Pb	²⁰⁵ Tl	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb		
Pb/U	²⁰² Hg	²⁰⁴ Pb	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb				²³² Th	²³⁵ U	²³⁸ U
Th						²³⁰ Th	²³² Th		²³⁴ U	²³⁵ U	²³⁸ U
U				²³⁴ U	²³⁵ U	²³⁶ U		²³⁸ U			

thermo scientific

Illuminating the edge of discovery

Technology that transforms your science

Just when you thought it couldn't be done, the new Thermo Scientific™ Neoma™ Multicollector ICP-MS raises the bar. Building on the strength of our multicollector technology, this next generation system delivers all the advantages of high-precision isotope ratio analysis, but none of the limitations. Now you can extract information from even the smallest samples with unrivaled sensitivity, low noise and flexibility to switch between multiple applications quickly and easily. Add in the time-saving benefits of new software, and you've got all you need to take productivity sky high.

Find out more at thermofisher.com/neoma

© 2020 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. Technologies of the Neoma are covered by US patents, for further information visit: <https://www.thermofisher.com/us/en/home/industrial/mass-spectrometry/virtual-patent-marks-inorganic-mass-spectrometry.html> BR30705-EN 0520C

ThermoFisher
SCIENTIFIC