

# Automated Online SPE-UHPLC/MS/MS Analysis of Emerging Pollutants in Water

Simultaneous quantification of contaminants in environmental water matrices

## Abstract

In this application note, an automated online solid phase extraction (SPE) method coupled to ultrahigh-performance liquid chromatography/tandem mass spectrometry (UHPLC/MS/MS) is described for simultaneous determination of emerging organic contaminants (EOCs) in environmental water matrices. A total of 87 EOCs, including 58 pharmaceuticals and personal care products (PPCPs), 22 perfluoroalkyl substances (PFASs), and seven organophosphorous flame retardants (PFRs), were selected as the target analytes. Through optimization of the online SPE sample enrichment parameters and the LC/MS separation and detection conditions, the method was evaluated for performance across all 87 analytes in environmental water matrices including drinking water, surface water, and wastewater effluent. The optimized method delivered very good linearity, analytical sensitivity (LOQs <10 ng/L for almost all analytes), accuracy, and precision, and can be reliably applied for high-throughput screening of these EOCs in environmental water matrices.

## Authors

Mengmeng Zhong, Tielong Wang, Jun Huang, and Gang Yu School of Environment, Tsinghua University, Beijing, China

Meiling Lu Agilent Technologies (China) Co. Ltd.

# Introduction

Pharmaceuticals and personal care products (PPCPs), perfluoroalkyl substances (PFASs), and organophosphorous flame retardants (PFRs) are three classes of organic substances widely used in daily life, agricultural, and industrial activities. With a lack of regulation and effective supervision, these substances may enter the environment through direct wastewater discharge or ineffective wastewater treatment. These activities could be harmful towards the drinking water resources residents depend on, and the environment in general. Timely and accurate monitoring of organic substance contamination of environmental water bodies is critical for alerting the public and evaluating water-processing reliability.

Much of the previous literature has focused on detection of one or several classes of organic contaminants in water. Conventional offline SPE is the major approach used for analyte enrichment, but is both time and labor-consuming. Online SPE enrichment coupled to LC/MS/MS analysis has been demonstrated to be a promising approach for the analysis of organic contaminants in water, and has been reported for the analysis of specific classes of contaminants such as antibiotics, pharmaceuticals, and PFASs in water in the past decade.<sup>1-3</sup> Additional reports demonstrated the potential of a combined online SPE-LC/MS/MS approach for simultaneous analysis of several classes of analytes in environmental water matrices.4,5 Such a method allows analysis of water samples with minimal manual intervention, and is cost-effective considering savings in time, solvents, and consumables. However, the dramatic variation of different classes of analytes in terms of physicochemical properties often limits the coverage of the analytes using a single method. Therefore, the key to this method is to select a universal online SPE cartridge to enrich as many types of analytes as possible under suitable conditions. This application note describes a PLRP cartridge-based online SPE method combined with UHPLC/MS/MS for simultaneous screening of 87 organic substances based on a recent report.<sup>6</sup> The three major classes of EOCs (PPCPs, PFASs, PFRs) in diverse environmental water matrices are covered.

# **Experimental**

### Materials and methods

Chemical standards of the analyzed compounds and isotope-labeled internal standards were purchased from Sigma-Aldrich (Steinheim, Germany), Dr. Ehrenstorfer (Augsburg, Germany), or Toronto Research Chemicals (Toronto, Canada). A set of 87 analytes was studied, including: 58 PPCPs (e.g, sulfonamides, quinolones, and  $\beta$ -lactams), 22 PFASs (e.g. perfluoroalkyl carboxylic acids (PFCAs, C<sub>4</sub> to C<sub>13</sub>), and perfluoroalkane sulfonates (PFSAs, C<sub>4</sub>, C<sub>6</sub>, C<sub>8</sub>, and C<sub>10</sub>), and seven PFRs. An additional 37 isotopically labeled internal standards (ILIS) were applied for ILIS dilution calibration to avoid quantitation bias. All the analytes and the ILISs are listed in the appendix (Table 1), and the ILIS for each analyte is also specified in it.

HPLC-grade solvents from J. T. Baker (USA) were used for all analyses, and a Milli-Q unit (Millipore, USA) was used to produce ultrapure water. Stock solutions were prepared in methanol (MeOH) and stored at 4 °C in the dark. Working solutions were obtained by serial dilution of stock solutions with ultrapure water.

#### Online SPE setup

Six online SPE cartridge types were sourced from Agilent Technologies (Santa Clara, CA, USA):

- Agilent ZORBAX Bonus-RP (p/n 821125-928)
- Agilent ZORBAX Eclipse Plus C18 (p/n 821125-936)
- Agilent Bond Elut Plexa PCX (factory-customized)
- Agilent ZORBAX Eclipse Plus
  Phenyl-Hexyl (p/n 821125-938)
- Agilent PLRP-S (p/n 5982-1271)
- Agilent ZORBAX SB-Aq (p/n 821125-933)

All the cartridges had specifications of  $2.1 \times 12.5$  mm, 5 µm particle size, except Bond Elut Plexa PCX and PLRP-S, which had particle sizes of 15 to 20 µm.

The online SPE LC system featured an Agilent InfinityLab Quick Change 2-position/10-port switching valve with two trapping columns housed in the column compartment controlled by a valve driver. Initially, the valve position was set to  $1 \rightarrow 2$ , the first trapping cartridge (SPE1) was in loading mode, and the second SPE cartridge (SPE2) was set to elution mode (Figure 1A). The quaternary LC pump, which was connected to the autosampler, flushed the sample to SPE1 for enrichment of the analytes. SPE2, containing enriched analytes through the previous run, was eluted in front of the analytical column by the binary LC pump. After switching to the  $1 \rightarrow 10$  position, the binary pump delivered the gradient mobile phase to elute the enriched analytes from SPE1 in backflush mode and separated the analytes in the analytical column (Figure 1B). At the same time, SPE2 was cleaned and reconditioned by the quaternary pump to prepare for loading in the next run. This setup allowed alternate enrichment of the analytes on SPE1 and SPE2, increasing the throughput of analysis.

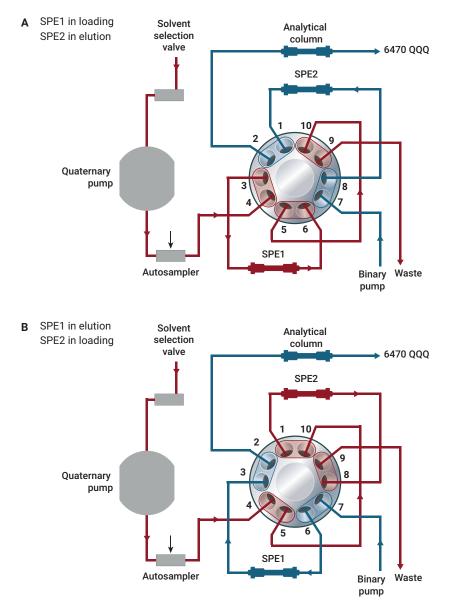



Figure 1. Valve positions for alternating loading and elution of the two SPE cartridges.

#### **Online SPE conditions**

| Parameter               | Value                                                                                                                                                                                 |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Enrichment Pump         | Agilent 1260 Infinity II quaternary pump                                                                                                                                              |
| Autosampler             | Agilent 1260 Infinity II multisampler                                                                                                                                                 |
| SPE Cartridge           | Agilent PLRP-S, 2.1 × 12.5 mm, 20 μm (p/n 5982-1271)                                                                                                                                  |
| Sample pH               | 7                                                                                                                                                                                     |
| Injection Volume        | 1.8 mL                                                                                                                                                                                |
| Loading/Washing Solvent | Methanol/0.05% formic acid aqueous solution (2:98, pH 4)                                                                                                                              |
| Maximum Pressure Limit  | 400 bar                                                                                                                                                                               |
| Loading/Washing Speed   | 1 mL/min                                                                                                                                                                              |
| Cleaning Solvent        | Methanol/acetonitrile/isopropanol (1:1:1)                                                                                                                                             |
| Cleaning Speed          | 0.6 mL/min                                                                                                                                                                            |
| Valve                   | Agilent InfinityLab Quick Change 2-position/10-port valve                                                                                                                             |
| Valve Switch Time       | 4 min                                                                                                                                                                                 |
| Delay Column            | Agilent ZORBAX Eclipse Plus C18, 4.6 × 50 mm, 3.5 $\mu$ m (p/n 959943-902)<br>(between the quaternary pump and the autosampler for removing the PFCs<br>interference from the system) |
| Gradient Profile        | 0 to 5 min: 98% water containing 0.05% formic acid (A), 2% pure methanol (B),<br>flow rate: 1 mL/min<br>5 to 5.01 min: change to 100% cleaning solvent; flow rate:0.6 mL/min          |

#### LC separation conditions

| Parameter              | Value                                                                                                                                                                                                      |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LC                     | Agilent 1260 Infinity II LC                                                                                                                                                                                |
| Column                 | Agilent InfinityLab Poroshell 120 EC-C18, 3.0 × 50 mm, 2.7 μm (p/n 699975-302)                                                                                                                             |
| Delay Column           | Agilent ZORBAX Eclipse Plus C18, 4.6 $\times$ 50 mm, 3.5 $\mu$ m (p/n 959943-902) (between the mixture of the binary pump and the Quick Exchange valve for removing the PFCs interference from the system) |
| Mobile Phase           | A) 0.05% Formic acid aqueous solution<br>B) Acetonitrile                                                                                                                                                   |
| Column Temperature     | 30 °C                                                                                                                                                                                                      |
| Flow Rate              | 0.3 mL/min                                                                                                                                                                                                 |
| Maximum Pressure Limit | 600 bar                                                                                                                                                                                                    |
| Gradient Profile       | 0 to 4 min: 5% acetonitrile<br>4 to 9 min: 5 to 40% acetonitrile<br>9 to 16 min: 40 to 100% acetonitrile<br>16 to 21 min: 100% acetonitrile                                                                |
| Post Time              | 9 min                                                                                                                                                                                                      |

#### **MS/MS** conditions

| Parameter                                | Value                                                                                       |
|------------------------------------------|---------------------------------------------------------------------------------------------|
| MS                                       | Agilent 6470A triple quadrupole LC/MS                                                       |
| Ionization Mode                          | Positive and negative ESI                                                                   |
| Capillary Voltage                        | 3500 V (Positive/Negative)                                                                  |
| Nozzle Voltage                           | 500 V (Positive/Negative)                                                                   |
| Nebulizer Gas (N <sub>2</sub> ) Pressure | 45 psi                                                                                      |
| Drying Gas (N <sub>2</sub> ) Temperature | 300 °C                                                                                      |
| Drying Gas Flow Rate                     | 7 L/min                                                                                     |
| Sheath Gas (N <sub>2</sub> ) Temperature | 350 °C                                                                                      |
| Sheath Gas Flow Rate                     | 7 L/min                                                                                     |
| Scanning Mode                            | Dynamic MRM                                                                                 |
| Cell Accelerator Voltage                 | 4 V                                                                                         |
| MRM Parameters                           | Obtained by Agilent MassHunter Optimizer, listed in appendix (Table 1)                      |
| Software                                 | Agilent MassHunter Acquisition/Qualitative Analysis/Quantitative Analysis software packages |

## **Results and discussion**

# Selection of SPE cartridges for optimal recovery

Six types of online SPE cartridges were evaluated for their suitability for use in the SPE method, and samples at three pH levels (3, 7, and 10) were used in testing. As the target analytes vary significantly in terms of physicochemical properties, a total of 20 representative analytes from each group were selected for demonstrating the recovery performance for each cartridge. Results show that PLRP-S offers the best recovery of most analytes, even with varying pH levels; for this reason, PLRP-S was selected for use in the method (Figure 2).

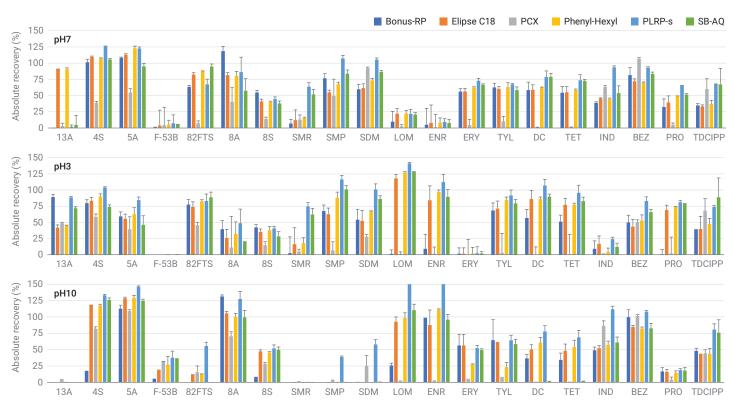
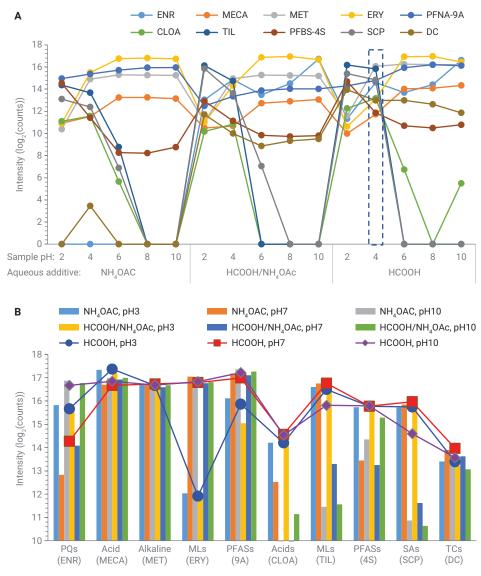




Figure 2. Absolute recovery for the representative analytes with six different SPE cartridges at three pHs.

# Solvent selection for both SPE loading/washing and analytical column separation

To achieve better method performance for most of the analytes, multiple parameters for both LC separation and online SPE extraction were tested, respectively, using representative analytes from each group. An orthogonal design of experiments was applied for the mobile phase additives and the sample pH in front of the analytical column. This was done using UHPLC system without online SPE configuration. It was found that 0.05% formic acid as aqueous additive and a sample pH of 4 provide the overall best response for all representative analytes (Figure 3A). For this reason, these conditions were selected for the analytical column.

Using online SPE configuration, the loading/washing solvent and the sample pH before loading onto the SPE cartridge were also investigated. As shown in Figure 3B, it was found that 0.05% formic acid solution as loading/washing solvent and pH 10 for the sample solution provided a better response than all other combinations (purple line in Figure 3B). The second best was the combination of 0.05% formic acid as loading/washing solvent and pH 7 for the sample solution (red line in Figure 3B). This result was consistent with Figure 2, in which a majority of analytes showed acceptable absolute recovery at pH7 using a PLRP-S cartridge. Sample pH at 7 can provide sufficient intensity for all the representative analytes and is more convenient for practical operation. Therefore, 0.05% formic acid solution was selected as loading/washing solution for the SPE column, and pH 7 was selected for sample pH before loading. As the washing solution brings the sample enriched on the SPE cartridge to the front of the analytical column, the optimal loading/washing solution aligns with the ideal requirements for sample pH in front of the analytical column.



**Figure 3.** Optimization of multiple parameters for LC separation conditions and online SPE conditions. (A) Combined effect of mobile phase additive (5 mM NH<sub>4</sub>OAc, 0.05% HCOOH, and 0.05% HCOOH/5 mM NH<sub>4</sub>OAc) and sample pH (2 to 10) on the representative analytes' response; (B) the combined effect of aqueous loading/washing solvent additive (5 mM NH<sub>4</sub>OAc, 0.05% HCOOH, and 0.05% HCOOH/5 mM NH<sub>4</sub>OAc) and sample pH (3, 7, and 10) on the representative analytes' response. **Note:** series labels in B are for loading/washing solvent-sample pH combinations.

Other parameters, including the organic solvent, the flow rate of enrichment pump, and the valve switching time (the latter two related to washing volume), were also optimized to ensure better recovery of the analytes. The optimized conditions were shown in the experimental section.

# Separation of analytes under optimized conditions

Under the optimized online SPE conditions and the LC separation, 87 analytes were eluted off the analytical column with retention times ranging from 7 to 20 minutes. Among the 87 analytes, there were three pairs of isomers and seven pairs of isobaric analytes. Though the retention times for some pairs are very close, each such pair has characteristic MRM transitions, enabling their individual identification. The typical overlapped MRM chromatograms are shown in Figure 4.

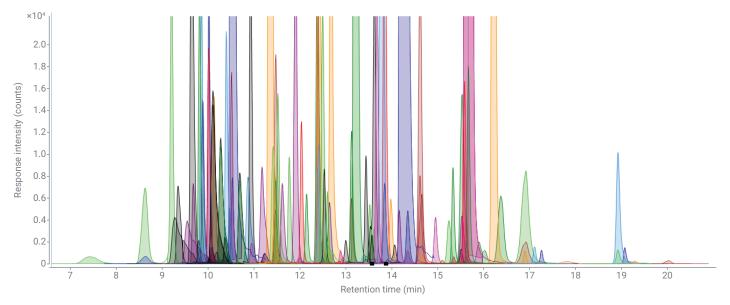



Figure 4. Overlapped MRM chromatograms for all 87 analytes in pure water at 100 ng/L.

#### Method performance evaluation

To minimize the matrix effect on the quantitation accuracy, the isotopically labeled internal standards dilution method using 37 IS compounds mixture solution at a level of 25 ng/L was selected for quantitation. The linearity of the method was evaluated in pure water spiked with all target analytes with concentrations ranging from 1.0 to 200 ng/L. As shown in Figure 5A, 85 out of 87 analytes had linear regression coefficients (R<sup>2</sup>) higher than 0.98, indicating that these analytes can be screened quantitatively. The exceptions were diclofenac acid (DLOA) with R<sup>2</sup> of 0.9570 and N,N-diethyl-meta-toluamide (DEET) with R<sup>2</sup> of 0.9772. The nonideal linearity was due to the high background for both analytes in pure water, so these could only be qualitatively screened.

The sensitivity of the method was evaluated in three environmental water matrices, including drinking water (DW), surface water (SW), and wastewater effluent (WWE). As shown in Figure 5B, the limits of quantitation (LOQ) in DW are all below 10 ng/L for all 85 analytes that could be quantitatively measured (excluding DLOA and DEET); for SW, 7 out of 85 analytes have LOQs between 10 and 20 ng/L, and the remaining are below 10 ng/L; for WWE, up to 15 analytes have LOQs between 10 and 20 ng/L, with the remaining analytes having LOQs lower than 10 ng/L (Figure 5B). Among these analytes, up to 76%, 65%, and 48% of the 85 analytes exhibited LOQs of  $\leq 5$  ng/L in DW, SW, and WWE, respectively. These results suggest that the method is sensitive for enviornmental testing.

The method accuracy and precision were also evaluated by measuring the response of spiking samples at levels of 25 and 100 ng/L for each analyte in three types of water matrices. For all three water matrices, more than 87% of analytes exhibit recovery values within 60 to 130% (Figure 5C), and the corresponding RSDs are within 20%. The analytes with lower recovery are mainly long-chain PFASs, PFRs, and several polar compounds. This demonstrates that the method is also accurate and reliable for quantitating the majority of these compounds.

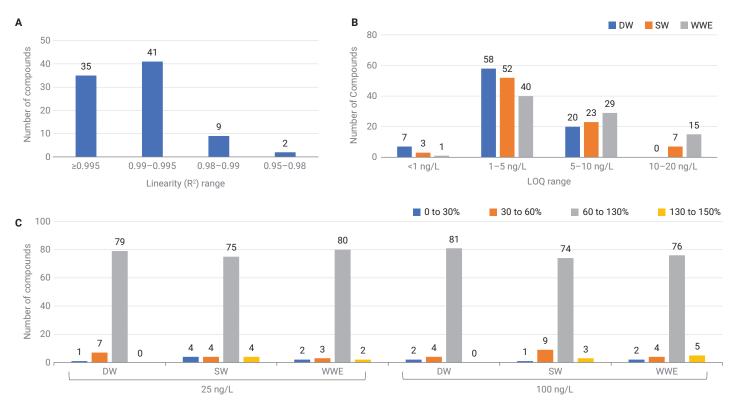



Figure 5. Method performance evaluation in terms of the following parameters. (A) Linearity from 1 to 200 ng/L in pure water; (B) limit of quantitation in DW, SW, and WWE; (C) recovery at spiking level of 25 and 100 ng/L (n = 3) in DW, SW, and WWE.

# Conclusion

An automated online SPE method coupled with UHPLC/MS/MS has been described for the simultaneous determination of 87 EOCs including 22 PFASs, 58 PPCPs, and seven PFRs in environmental water matrices. The PLRP-S SPE cartridge was selected for analyte enrichment due to its excellent retaining capability and recovery for a wide spectrum of analytes under the optimized conditions. Multiple parameters for LC separation and online SPE enrichment have been evaluated to achieve the overall best performance for all the analytes. The optimized method has very good linearity, a very low limit of guantitation, and satisfactory recovery and precision in the three environmental matrices tested for a majority of analytes included. These results suggest that the method can reliably be applied in real water sample screening. The optimized strategy can be extended to online SPE analysis of other groups of organic contaminants in water.

## References

- 1. Dinh, Q. T. *et al.* Measurement of Trace Levels of Antibiotics in River Water Using On-Line Enrichment and Triple-Quadrupole LC-MS/MS. *Talanta* **2011**, *85*, 1238–1245.
- Ferrer-Aguirre, A. et al. Simple and Quick Determination of Analgesics and Other Contaminants of Emerging Concern in Environmental Waters by On-Line Solid Phase Extraction Coupled to Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. A 2016, 1446, 27–33.
- Mazzoni, M. et al. An On-Line Solid Phase Extraction-Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Perfluoroalkyl Acids in Drinking and Surface Waters. J. Anal. Methods Chem. 2015, 942016.

- 4. Anumol, T. *et al.* Rapid Analysis of Trace Organic Compounds in Water by Automated Online Solid-Phase Extraction Coupled to Liquid Chromatography-Tandem Mass Spectrometry. *Talanta* **2015**, *132*, 77–86.
- Wode, F. et al. Multiresidue Analytical Method for the Simultaneous Determination of 72 Micropollutants in Aqueous Samples with Ultra High Performance Liquid Chromatography-High Resolution Mass Spectrometry. J. Chromatogr. A 2012, 1270, 118–126.
- Zhong, M. *et al.* Automated Online Solid-phase Extraction Liquid Chromatography Tandem Mass Spectrometry Investigation for Simultaneous Quantification of Per- and Polyfluoroalkyl Substances, Pharmaceuticals and Personal Care Products, and Organophosphorus Flame Retardants in Environmental Waters. *J. Chromatogr. A* **2019**, *1602*, 350–358.

# Appendix

Table 1. The compounds information, their retention times, and the data acquisition parameters for multiple reaction monitoring using LC/QQQ.

|                                                        |                                   | RT    | Precursor          | Fragmentor | Product ions<br>(m/z) | CE (V)       |                                   |          |
|--------------------------------------------------------|-----------------------------------|-------|--------------------|------------|-----------------------|--------------|-----------------------------------|----------|
| Compound                                               | Abbreviation                      | (min) | lon ( <i>m/z</i> ) | (V)        | Quant./Qual.          | Quant./Qual. | IS                                | Polarity |
| Perfluorobutanoic acid                                 | 4A                                | 10.09 | 212.9              | 60         | 168.9                 | 8            | <sup>13</sup> C <sub>4</sub> -4A  | Neg      |
| <sup>13</sup> C <sub>4</sub> -Perfluorobutanoic acid   | <sup>13</sup> C <sub>4</sub> -4A  | 10.09 | 217.0              | 60         | 171.9                 | 5            | IS                                | Neg      |
| Perfluoropentanoic acid                                | 5A                                | 11.55 | 262.9              | 61         | 218.9                 | 5            | <sup>13</sup> C <sub>5</sub> -5A  | Neg      |
| <sup>13</sup> C <sub>5</sub> -Perfluoropentanoic acid  | <sup>13</sup> C <sub>5</sub> -5A  | 11.55 | 268.0              | 60         | 222.9                 | 5            | IS                                | Neg      |
| Perfluorohexanoic acid                                 | 6A                                | 12.36 | 312.9              | 60         | 268.9/119.0           | 5/21         | <sup>13</sup> C <sub>2</sub> -6A  | Neg      |
| <sup>13</sup> C <sub>2</sub> -Perfluorohexanoic acid   | <sup>13</sup> C <sub>2</sub> -6A  | 12.36 | 315.0              | 60         | 269.9                 | 5            | IS                                | Neg      |
| Perfluoroheptanoic acid                                | 7A                                | 13.11 | 362.8              | 60         | 168.9/319.0           | 17/5         | <sup>13</sup> C <sub>4</sub> -7A  | Neg      |
| <sup>13</sup> C <sub>4</sub> -Perfluoroheptanoic acid  | <sup>13</sup> C <sub>4</sub> -7A  | 13.11 | 367.1              | 60         | 321.9                 | 5            | IS                                | Neg      |
| Perfluorooctanoate                                     | 8A                                | 13.82 | 413.1              | 65         | 368.8/168.9           | 5/17         | <sup>13</sup> C <sub>4</sub> -8A  | Neg      |
| <sup>13</sup> C <sub>4</sub> -Perfluorooctanoate       | <sup>13</sup> C <sub>4</sub> -8A  | 13.82 | 417.1              | 50         | 371.8                 | 5            | IS                                | Neg      |
| Perfluorononanoic acid                                 | 9A                                | 14.60 | 462.9              | 60         | 418.8/218.9           | 5/17         | <sup>13</sup> C <sub>5</sub> -9A  | Neg      |
| <sup>13</sup> C <sub>5</sub> -Perfluorononanoic acid   | <sup>13</sup> C <sub>5</sub> -9A  | 14.60 | 468.1              | 60         | 422.9                 | 5            | IS                                | Neg      |
| Perfluorodecanoic acid                                 | 10A                               | 15.51 | 513.1              | 50         | 468.8/268.9           | 9/17         | <sup>13</sup> C <sub>2</sub> -10A | Neg      |
| <sup>13</sup> C <sub>2</sub> -Perfluorodecanoic acid   | <sup>13</sup> C <sub>2</sub> -10A | 15.51 | 515.1              | 60         | 469.9                 | 5            | IS                                | Neg      |
| Perfluoroundecanoic acid                               | 11A                               | 16.90 | 563.1              | 88         | 518.9/493.2           | 9/29         | <sup>13</sup> C <sub>2</sub> -11A | Neg      |
| <sup>13</sup> C <sub>2</sub> -Perfluoroundecanoic acid | <sup>13</sup> C <sub>2</sub> -11A | 16.90 | 565.0              | 100        | 519.8                 | 8            | IS                                | Neg      |
| Perfluorododecanoic acid                               | 12A                               | 18.90 | 613.1              | 103        | 568.9/169             | 9/15         | <sup>13</sup> C <sub>2</sub> -12A | Neg      |
| <sup>13</sup> C <sub>2</sub> -Perfluorododecanoic acid | <sup>13</sup> C <sub>2</sub> -12A | 18.90 | 615.0              | 120        | 519.8                 | 8            | IS                                | Neg      |
| Perfluorotridecanoic acid                              | 13A                               | 19.27 | 663.1              | 93         | 618.9/168.9           | 9/29         | <sup>13</sup> C <sub>2</sub> -12A | Neg      |
| Perfluorobutanesulfonate                               | 4S                                | 12.60 | 298.8              | 128        | 80.0/98.9             | 37/33        | <sup>13</sup> C <sub>3</sub> -4S  | Neg      |
| $^{13}C_3$ -Perfluorobutanesulfonate                   | <sup>13</sup> C <sub>3</sub> -4S  | 12.60 | 301.8              | 100        | 79.9                  | 32           | IS                                | Neg      |
| Perfluoropentanesulfonate                              | 5S                                | 13.47 | 348.8              | 136        | 80.0/98.9             | 45/37        | <sup>13</sup> C <sub>3</sub> -6S  | Neg      |
| Perfluorohexanesulfonate                               | 6S                                | 14.30 | 398.8              | 161        | 80.0/98.9             | 45/41        | <sup>13</sup> C <sub>3</sub> -6S  | Neg      |
| <sup>13</sup> C <sub>3</sub> -Perfluorohexanesulfonate | <sup>13</sup> C <sub>3</sub> -6S  | 14.30 | 401.8              | 156        | 80.0/98.9             | 49/41        | IS                                | Neg      |
| Perfluoroheptanesulfonate                              | 7S                                | 15.19 | 448.8              | 166        | 80.0/98.9             | 49/45        | <sup>13</sup> C <sub>4</sub> -8A  | Neg      |
| Perfluorooctanesulfonate                               | 8S                                | 16.30 | 498.8              | 172        | 80.0/98.9             | 50/45        | <sup>13</sup> C <sub>4</sub> -8A  | Neg      |
| Perfluorodecanesulfonate                               | 10S                               | 19.05 | 598.8              | 196        | 80.0/98.9             | 61/53        | <sup>13</sup> C <sub>2</sub> -11A | Neg      |
| 3,3,4,4,5,5,6,6,6-Nonafluoro-1-hexanesulfonic acid     | 4:2FTS                            | 12.02 | 327.1              | 123        | 306.9/81.0            | 21/29        | <sup>13</sup> C <sub>3</sub> -4S  | Neg      |
| 1H,1H,2H,2H-Perfluorooctanesulfonic acid               | 6:2FTS                            | 13.42 | 427.2              | 128        | 406.9/81.0            | 25/37        | <sup>13</sup> C <sub>4</sub> -7A  | Neg      |
| 1H,1H,2H,2H-Perfluorodecanesulfonic acid               | 8:2FTS                            | 13.82 | 527.2              | 171        | 506.8/81.0            | 29/41        | <sup>13</sup> C <sub>3</sub> -6S  | Neg      |
| N-ethylperfluorooctanesulfonamide                      | EtFOSA                            | 17.22 | 526.2              | 128        | 168.9/218.9           | 29/25        | <sup>13</sup> C <sub>2</sub> -11A | Neg      |
| N-methylperfluorooctanesulfonamide (MeFOSA)            | MeFOSA                            | 16.87 | 512.2              | 128        | 168.9/218.9           | 29/25        | <sup>13</sup> C <sub>2</sub> -11A | Neg      |
| Chlorinated polyfluorinated ether sulfonate            | 62F-53B                           | 17.68 | 530.7              | 136        | 83.0                  | 29           | <sup>13</sup> C <sub>2</sub> -11A | Neg      |
| Tilmicosin                                             | TIL                               | 11.16 | 869.3              | 260        | 174.3/696.9           | 50/46        | D₃-TIL                            | Pos      |
| D <sub>3</sub> -Tilmicosin                             | D <sub>3</sub> -TIL               | 11.16 | 872.6              | 270        | 177.0/696.4           | 50/46        | IS                                | Pos      |
| Clarithromycin                                         | CTM                               | 12.53 | 748.4              | 165        | 158.0/590.3           | 29/21        | D <sub>7</sub> -ROX               | Pos      |
| Erythromycin                                           | ERY                               | 11.78 | 734.4              | 155        | 158.0/576.3           | 29/17        | D <sub>7</sub> -ROX               | Pos      |
| Roxithromycin                                          | ROX                               | 12.60 | 837.4              | 165        | 679.3/558.3           | 21/25        | D <sub>7</sub> -ROX               | Pos      |
| D <sub>7</sub> -Roxithromycin                          | D <sub>7</sub> -ROX               | 12.60 | 844.4              | 170        | 686.4/558.3           | 21/25        | IS                                | Pos      |
| Tylosin                                                | TYL                               | 11.98 | 916.4              | 240        | 772.3                 | 33           | D <sub>7</sub> -ROX               | Pos      |
| Clindamycin                                            | CLD                               | 10.93 | 425.1              | 145        | 126.1/377.1           | 29/21        | D <sub>3</sub> -CLD               | Pos      |
| D <sub>3</sub> -Clindamycin                            | D3-CTD                            | 10.93 | 428.1              | 150        | 129.1/380.1           | 29/21        | IS                                | Pos      |
| Lincomycin                                             | LCM                               | 9.22  | 407.1              | 148        | 126.1/359.1           | 33/21        | D <sub>3</sub> -LCM               | Pos      |

| Compound                                            | Abbreviation                      | RT<br>(min) | Precursor<br>Ion (m/z) | Fragmentor<br>(V) | Product ions<br>( <i>m/z</i> )<br>Quant./Qual. | CE (V)<br>Quant./Qual. | IS                                                | Polarity |
|-----------------------------------------------------|-----------------------------------|-------------|------------------------|-------------------|------------------------------------------------|------------------------|---------------------------------------------------|----------|
| D <sub>2</sub> -Lincomycin                          | D <sub>3</sub> -LCM               | 9.22        | 410.1                  | 150               | 129.1                                          | 33                     | IS                                                | Pos      |
| Flumequine                                          | FLU                               | 12.66       | 262.0                  | 130               | 244.0/201.9                                    | 21/37                  | <sup>13</sup> C <sub>3</sub> -FLU                 | Pos      |
| <sup>13</sup> C <sub>3</sub> -Flumequine            | <sup>13</sup> C <sub>3</sub> -FLU | 12.66       | 265.0                  | 120               | 247.0/204.9                                    | 17/37                  | IS                                                | Pos      |
| Oxolinic acid                                       | OXA                               | 11.51       | 262.0                  | 120               | 244.0/215.9                                    | 17/33                  | <sup>13</sup> C <sub>3</sub> -FLU                 | Pos      |
| Nalidixic acid                                      |                                   |             |                        |                   |                                                |                        |                                                   |          |
|                                                     | NA<br>D. DA                       | 12.48       | 233.0                  | 89                | 215.0/186.9                                    | 13/29                  | D <sub>5</sub> -DA                                | Pos      |
| D <sub>s</sub> -Nalidixic acid                      | D <sub>5</sub> -DA                | 12.48       | 238.0                  | 106               | 220.0/188.0                                    | 13/29                  | IS                                                | Pos      |
| Difloxacin                                          | DIF                               | 10.53       | 400.0                  | 140               | 356.1/299.0                                    | 21/33                  | D <sub>5</sub> -LOM                               | Pos      |
| Danofloxacn                                         | DAN                               | 10.02       | 358.1                  | 135               | 340.1/82.1                                     | 25/49                  | D <sub>5</sub> -LOM                               | Pos      |
| Marbofloxacin                                       | MAR                               | 9.69        | 363.0                  | 130               | 320.0/345.1                                    | 13/21                  | D <sub>5</sub> -LOM                               | Pos      |
| Sarafloxacin                                        | SAR                               | 10.47       | 386.0                  | 130               | 368.1/342.1                                    | 25/21                  | D <sub>5</sub> -LOM                               | Pos      |
| Lomefloxacin                                        | LOM                               | 10.02       | 352.0                  | 130               | 265.0/308.1                                    | 25/17                  | D <sub>5</sub> -LOM                               | Pos      |
| D <sub>5</sub> -Lomefloxacin                        | D <sub>s</sub> -LOM               | 10.02       | 357.1                  | 135               | 270.1/313.1                                    | 25/17                  | IS                                                | Pos      |
| Ciprofloxacin                                       | CIP                               | 9.89        | 332.1                  | 130               | 314.1/288.0                                    | 21/41                  | D <sub>8</sub> -CIP                               | Pos      |
| D <sub>8</sub> - Ciprofloxacin                      | D <sub>8</sub> -CIP               | 10.33       | 340.1                  | 134               | 322.1/296.0                                    | 25/29                  | IS                                                | Pos      |
| Sparfloxacin                                        | SPA                               | 10.51       | 393.1                  | 140               | 349.1/292.1                                    | 21/29                  | D <sub>5</sub> -LOM                               | Pos      |
| Pefloxaxin                                          | PEF                               | 9.87        | 334.1                  | 125               | 316.1/290.1                                    | 25/17                  | D <sub>5</sub> -LOM                               | Pos      |
| Enrofloxacin                                        | ENR                               | 10.14       | 360.1                  | 130               | 342.1/316.1                                    | 25/21                  | D <sub>8</sub> -OFL                               | Pos      |
| Norfloxacin                                         | NOR                               | 9.80        | 320.0                  | 130               | 302.1/276.1                                    | 25/17                  | D <sub>8</sub> -OFL                               | Pos      |
| Ofloxacin                                           | OFL                               | 9.82        | 362.0                  | 140               | 318.1/261.0                                    | 21/29                  | D <sub>8</sub> -OFL                               | Pos      |
| D <sub>8</sub> -Ofloxacin                           | D <sub>8</sub> -OFL               | 9.82        | 370.1                  | 135               | 326.1/265.0                                    | 21/33                  | IS                                                | Pos      |
| Sulfachloropyridazine                               | SCP                               | 10.87       | 285.0                  | 105               | 155.9/92.0                                     | 13/29                  | <sup>13</sup> C <sub>6</sub> -SCP                 | Pos      |
| <sup>13</sup> C <sub>6</sub> -Sulfachloropyridazine | <sup>13</sup> C <sub>6</sub> -SCP | 10.87       | 291.0                  | 100               | 161.9/98.0                                     | 13/33                  | IS                                                | Pos      |
| Sulfadiazine                                        | SD                                | 8.81        | 250.9                  | 100               | 155.9/92.1                                     | 13/33                  | D <sub>4</sub> -SD                                | Pos      |
| D4-Sulfadiazine                                     | D <sub>4</sub> -SD                | 8.81        | 254.9                  | 105               | 160.0/96.0                                     | 17/33                  | IS                                                | Pos      |
| Sulfamethoxazole                                    | SMX                               | 11.17       | 254.0                  | 104               | 92.0/155.9                                     | 29/17                  | <sup>13</sup> C <sub>6</sub> -SIX                 | Pos      |
| Sulfamonomethoxine                                  | SMM                               | 10.70       | 281.0                  | 115               | 155.9/92.0                                     | 17/37                  | D₄-SMM                                            | Pos      |
| D <sub>4</sub> -Sulfamonomethoxine                  | D <sub>4</sub> -SMM               | 10.70       | 285.0                  | 120               | 155.9/96.1                                     | 17/33                  | IS                                                | Pos      |
| Sulfathiazole                                       | STZ                               | 9.27        | 255.9                  | 105               | 155.9/92.0                                     | 13/29                  | D₄-STZ                                            | Pos      |
| D <sub>4</sub> -Sulfathiazole                       | D <sub>4</sub> -STZ               | 9.27        | 259.8                  | 105               | 159.9/96.1                                     | 17/33                  | IS                                                | Neg      |
| * Sulfamerazine                                     | -<br>SMR                          | 9.55        | 262.9                  | 115               | 92.0/155.9                                     | 33/17                  | D <sub>4</sub> -STZ                               | Pos      |
| Sulfisoxazole                                       | SIX                               | 11.41       | 267.9                  | 105               | 155.9/92.0                                     | 13/33                  | <sup>4</sup><br><sup>13</sup> C <sub>6</sub> -SIX | Pos      |
| <sup>13</sup> C,-Sulfisoxazole                      | <sup>13</sup> C <sub>6</sub> -SIX | 11.41       | 274.0                  | 115               | 161.9/98.0                                     | 13/29                  | IS                                                | Pos      |
| Sulfisomidin                                        | SAAM                              | 10.12       | 279.0                  | 125               | 185.9/124.0                                    | 17/25                  | <sup>13</sup> C <sub>6</sub> -SCP                 | Pos      |
| Sulfamethoxypyridazine                              | SMP                               | 10.28       | 280.9                  | 115               | 155.9/92.0                                     | 17/33                  | D <sub>3</sub> -SMP                               | Pos      |
| D <sub>3</sub> -Sulfamethoxypyridazine              | D <sub>3</sub> -SMP               | 10.28       | 284.0                  | 110               | 155.9/92.0                                     | 17/33                  | IS                                                | Pos      |
| Sulfamethazine                                      | SMZ                               | 10.12       | 278.9                  | 120               | 185.9/92.0                                     | 17/33                  | D <sub>2</sub> -SMP                               | Pos      |
| Sulfadimethoxine                                    | SDM                               | 11.89       | 310.9                  | 115               | 156.0/92.0                                     | 21/41                  | D <sub>3</sub> -SIM<br>D₄-SDM                     | Pos      |
| D <sub>4</sub> -Sulfadimethoxine                    | D <sub>4</sub> -SDM               | 11.89       | 315.0                  | 125               | 156.0/92.0                                     | 25/37                  | IS                                                | Pos      |
| 7                                                   | -                                 |             |                        |                   |                                                |                        |                                                   |          |
| Trimethoprim                                        |                                   | 9.65        | 291.1                  | 145               | 230.0/264.0                                    | 25/29                  | D <sub>3</sub> -TMP                               | Pos      |
| D <sub>3</sub> -Trimethoprim                        | D <sub>3</sub> -TMP               | 9.65        | 294.1                  | 140               | 230.0/264.0                                    | 25/29                  | IS                                                | Pos      |
| Doxycycline                                         | DC                                | 10.14       | 445.0                  | 130               | 154.0/428.5                                    | 13/18                  | D <sub>3</sub> -DC                                | Pos      |
| D <sub>3</sub> -Doxycycline                         | D <sub>3</sub> -DC                | 11.14       | 448.1                  | 130               | 430.9/202.6                                    | 17/53                  | IS                                                | Pos      |
| Methacycline                                        | MEC                               | 10.14       | 443.0                  | 110               | 426.3/201.0                                    | 15/40                  | D <sub>3</sub> -DC                                | Pos      |
| Oxytetracycoine                                     | OTC                               | 9.84        | 461.1                  | 115               | 426.1/443.0                                    | 19/10                  | D <sub>6</sub> -TET                               | Pos      |
| Chlorotetracycline                                  | CTC                               | 10.37       | 479.0                  | 135               | 462.0/444.0                                    | 14/22                  | D <sub>6</sub> -TET                               | Pos      |
| Tetracycline                                        | TET                               | 10.14       | 445.1                  | 120               | 154.0/410.1                                    | 29/21                  | D <sub>6</sub> -TET                               | Pos      |

|                                                   |                        | RT    | Precursor          | Fragmentor | Product ions<br>(m/z) | CE (V)       |                        |          |
|---------------------------------------------------|------------------------|-------|--------------------|------------|-----------------------|--------------|------------------------|----------|
| Compound                                          | Abbreviation           | (min) | lon ( <i>m</i> /z) | (V)        | Quant./Qual.          | Quant./Qual. | IS                     | Polarity |
| D <sub>6</sub> -Tetracycline                      | D <sub>6</sub> -TET    | 10.14 | 451.3              | 115        | 416.1/160.0           | 21/29        | IS                     | Pos      |
| Florfenicol                                       | FF                     | 11.20 | 357.8              | 95         | 337.9/185.0           | 5/17         | D <sub>3</sub> -FF     | Neg      |
| D <sub>2</sub> -Florfenicol                       | D <sub>3</sub> -FF     | 11.20 | 360.8              | 95         | 340.9/188.0           | 8/20         | IS                     | Neg      |
| Chloramphenicol                                   | CAP                    | 11.52 | 320.9              | 110        | 256.9/152.0           | 17/9         | D <sub>7</sub> -PEN-G  | Neg      |
| Thiamphenicol                                     | THI                    | 11.22 | 355.8              | 110        | 185.0/291.9           | 21/9         | D <sub>7</sub> -PEN-G  | Neg      |
| Indomethacine                                     | IND                    | 14.65 | 356.0              | 85         | 312.0/297.0           | 5/17         | D <sub>4</sub> -IND    | Neg      |
| D <sub>4</sub> -Indomethacine                     | D <sub>4</sub> -IND    | 14.65 | 360.1              | 70         | 316.0/301.0           | 5/17         | IS                     | Neg      |
| *<br>Diclofenac acid                              | DLOA                   | 14.61 | 293.9              | 76         | 249.9/213.9           | 9/21         | D₄-DLOA                | Neg      |
| D <sub>4</sub> -Diclofenac acid                   | D <sub>4</sub> -DLOA   | 14.61 | 297.9              | 79         | 253.9/217.0           | 9/21         | IS                     | Neg      |
| * Mefenamic acid                                  | MECA                   | 15.32 | 240.0              | 105        | 196.0/192.0           | 17/29        | D <sub>4</sub> -BEZ    | Neg      |
| Phenacetin                                        | PHE                    | 11.46 | 180.0              | 136        | 110.0/138.0           | 21/17        | D <sub>7</sub> -PEN-G  | Neg      |
| D <sub>7</sub> -Penicilline G                     | D <sub>7</sub> -PEN-G  | 12.10 | 342.1              | 170        | 218.0/98.0            | 13/61        | IS                     | Pos      |
| Gemfibrozil                                       | GEM                    | 15.50 | 249.0              | 76         | 121.0/113.0           | 21/5         | D₄-CLOA                | Neg      |
| Bezafibrate                                       | BEZ                    | 13.60 | 360.0              | 103        | 274.0/153.9           | 17/33        | D <sub>4</sub> -BEZ    | Neg      |
| D <sub>4</sub> -Bezafibrate                       | D <sub>4</sub> -BEZ    | 13.60 | 364.0              | 105        | 278.0/158.0           | 17/33        | 4<br>IS                | Neg      |
| Clofibric acid                                    | CLOA                   | 13.55 | 212.9              | 73         | 126.9/85.0            | 17/5         | D <sub>4</sub> -CLOA   | Neg      |
| D <sub>4</sub> -Clofibric acid                    | D <sub>4</sub> -CLOA   | 13.55 | 216.9              | 78         | 131.0/85.0            | 17/5         | 4<br>IS                | Neg      |
| Metoprolol                                        | 4<br>MET               | 10.40 | 268.1              | 127        | 74.1/116.0            | 25/21        | D <sub>7</sub> -PRO    | Pos      |
| Propraolol                                        | PRO                    | 11.46 | 260.1              | 122        | 116.0/56.1            | 17/33        | D <sub>7</sub> -PRO    | Pos      |
| D <sub>7</sub> -Propraolol                        | D <sub>7</sub> -PRO    | 11.46 | 267.1              | 125        | 123.1/79.1            | 21/25        | IS                     | Pos      |
| Sulpiride                                         | SUL                    | 8.63  | 342.1              | 140        | 112.0/213.9           | 29/37        | IS                     | Pos      |
| Tiamulin                                          | TIA                    | 12.38 | 494.3              | 137        | 192.0/119.0           | 21/45        | D <sub>3</sub> -LCM    | Pos      |
| Carbamazepin                                      | CMP                    | 12.40 | 237.0              | 125        | 194.0/178.9           | 21/41        | D <sub>10</sub> -CMP   | Pos      |
| D <sub>10</sub> -Carbamazepin                     | D <sub>10</sub> -CMP   | 12.40 | 247.1              | 125        | 204.1/202.0           | 25/45        | IS                     | Pos      |
| Caffeine                                          | CAF                    | 9.36  | 194.9              | 120        | 138.0/42.2            | 21/45        |                        | Pos      |
| N,N-diethyl-meta-toluamide                        | DEET                   | 13.20 | 192.1              | 120        | 119.0/91.0            | 17/37        | D6-DEET                | Pos      |
| D <sub>c</sub> -N,N-diethyl-meta-toluamide        | D <sub>6</sub> -DEET   | 13.20 | 198.1              | 135        | 119.0/91.0            | 21/37        | ہ<br>IS                | Pos      |
| Penicilline G                                     | ₀<br>PEN-G             | 12.13 | 335.1              | 165        | 216.9/91.0            | 10/58        | D <sub>7</sub> -PEN-G  | Pos      |
| Olaquindox                                        | OLA                    | 7.42  | 264.0              | 115        | 143.0/202.9           | 37/17        | D <sub>4</sub> -OLA    | Pos      |
| D <sub>4</sub> -Olaquindox                        | D <sub>4</sub> -OLA    | 7.42  | 268.1              | 125        | 143.0/216.0           | 41/25        | IS                     | Pos      |
| Monensin                                          | MON                    | 19.99 | 693.4              | 230        | 675.4/479.3           | 41/61        | D <sub>27</sub> -TNBP  | Pos      |
| Tris (2-butoxyethyl) phosphate                    | TBOEP                  | 16.21 | 399.2              | 122        | 299.1/199.0           | 13/13        | D <sub>21</sub> -TPP   | Pos      |
| Tris (1,3-dichloro-2-propyl) phosphate            | TDCIPP                 | 15.33 | 430.8              | 143        | 98.9/208.9            | 33/17        | D <sub>15</sub> -DCIPP | Pos      |
| $D_{15}$ -Tris (1,3-dichloro-2-propyl) phosphate  | D <sub>15</sub> -DCIPP | 15.33 | 446.0              | 143        | 102.0                 | 33           | IS                     | Pos      |
| Triethyl phosphate                                | TEP                    | 11.35 | 183.0              | 93         | 98.9/81.0             | 21/50        | D <sub>15</sub> -TEP   | Pos      |
| D <sub>15</sub> -Triethyl phosphate               | D <sub>15</sub> -TEP   | 11.35 | 198.0              | 93         | 102.0/82.0            | 21/50        | IS                     | Pos      |
| Tri-isobutylphosphate                             | TIBP                   | 15.71 | 267.1              | 90         | 98.9/211.0            | 17/5         | D <sub>27</sub> -TNBP  | Pos      |
| Trimethylolpropane phosphate                      | TMPP                   | 17.11 | 369.0              | 170        | 165.0/91.1            | 49/45        | D <sub>27</sub> -TNBP  | Pos      |
| Tri-n-butyl phosphate                             | TNBP                   | 15.61 | 267.1              | 94         | 99.0/211.0            | 21/5         | D <sub>27</sub> -TNBP  | Pos      |
| D <sub>27</sub> - Tri- <i>n</i> -butyl phosphate  | D <sub>27</sub> -TNBP  | 15.61 | 294.0              | 94         | 166.0/102.0           | 9/21         | IS                     | Pos      |
| Tri-n-propyl phosphate                            | TPP                    | 13.76 | 294.0              | 85         | 99.0/183.0            | 17/5         |                        | Pos      |
| D <sub>21</sub> - Tri- <i>n</i> -propyl phosphate | D <sub>21</sub> -TPP   | 13.76 | 225.0              | 85         | 150.0/102.0           | 9/21         | D <sub>21</sub> -TPP   | Pos      |

#### www.agilent.com/chem

DE.5042361111

This information is subject to change without notice.

© Agilent Technologies, Inc. 2020 Printed in the USA, April 1, 2020 5994-1819EN

