Application Note
Food Testing and
Agriculture

Agilent

Analysis of Artificial Colorants in Haw Jelly Using SampliQ WAX Coupled with High Performance Liquid Chromatography (HPLC)

Authors

Congcong Zhang and
Xia Yang
Agilent Technologies, Inc

Experimental

Target analytes

The six target analytes in this application note include Citrine,Amaranth, Carmine, Sunset Yellow, Allura Red, and Brilliant Blue arificial colorants. Figure 1 shows the chemical structures.

Carmine

Sunset yellow

Allura red

Brilliant blue

Figure 1. Chemical structures of target analytes.
Citrine

HPLC conditions

Parameter	Value
Column	Agilent InfinityLab Poroshell 120 EC-C18, $100 \times 4.6 \mathrm{~mm}, 2.7 \mu \mathrm{~m}$ (p/n 695975-902)
Flow Rate	$1 \mathrm{~mL} / \mathrm{min}$
Column Temperature	$35^{\circ} \mathrm{C}$
Injection Volume	$10 \mu \mathrm{~L}$
Detection Wavelength	425 nm (citrine), 500 nm (amaranth, carmine, sunset yellow, allura red), 630 nm (brilliant blue)
Mobile Phase	A) 20 mM ammonium acetate $\mathrm{pH}=5$ B) ACN
Gradient	Time (min) \%A \%B 0 100 2 6.0 100 30 11.0 88 90 11.5 88 100 12.0 2 2
Post Time	3 minutes

Instrument method

The samples were run on an Agilent 1260 Infinity II LC system with a diode array detector (DAD). Agilent ChemStation software was used for data acquisition and processing.

Sample extraction

Weigh 2 g of haw jelly piece, then add 20 mg of pectinase and 5 mL water followed by 15 minutes of
sonication mixing for enzyme digestion.
Add 10 mL of extraction solution
(ammonia:water:acetonitrile = 2:48:50), vortex for one minute, then centrifuge for 10 minutes to get the supernatant. Compensate the supernatant to 30 mL with water. Adjust the pH of the sample solution to $\mathrm{pH}=6$ with formic acid; the sample is now ready for SPE cleanup, following the procedure shown in Figure 2.

Figure 2. Sample preparation workflow chart.

Results and discussion

Table 1. Method recovery (REC) and RSD.

Analytes	$0.5 \mu \mathrm{~g} / \mathrm{g}$ Spiking		$\mathbf{1} \boldsymbol{\mu \mathrm { g } / \mathrm { g } \text { Spiking }}$		$\mathbf{5} \boldsymbol{\mu \mathrm { g } / \mathrm { g } \text { Spiking }}$	
	Rec (\%)	RSD (\%)	Rec (\%)	RSD (\%)	Rec (\%)	RSD (\%)
Citrine	99.4	7.9	96.6	2.5	92.2	2.1
Amaranth	95.5	7.4	109.1	3.4	90.7	2.6
Carmine	111.3	6.3	89.3	2.8	88.9	2.0
Sunset Yellow	88.0	8.5	94.0	3.4	90.5	2.1
Allura Red	102.1	7.9	107.3	4.5	90.8	4.4
Brilliant Blue	98.9	8.9	79.7	4.0	88.3	3.3

Figure 3. Chromatograms of six artificial pigments in neat standards solution (A) and haw jelly sample (other three figures: blue-neat standard; red-matrix blank; green-pre-spiked sample with $5 \mu \mathrm{~g} / \mathrm{g}$).

Conclusion

This method using Agilent SampliQ
WAX SPE cartridges coupled with HPLC
for analysis of six artificial colorants
in haw jelly candies provided excellent recoveries of approximately 79% to 112%. This method can be a good reference to detect these six artificial colorants in other fruit jelly candies.
www.agilent.com/chem

Trusted Answers

