Carrier Gases in Capillary GC

Abby Folk Applications Engineer February 15, 2011

Agilent Technologies

Configurations for Carrier Gas Purifiers

CARRIER GAS

Mobile Phase

Carries the solutes down the column

Selection and velocity influences efficiency and retention time

Must be inert to solutes and stationary phase

Must be free of detectable contaminants

Must have a leak free and very precise pressure delivery system

COMMON CARRIER GASES

Nitrogen

Helium

Hydrogen

Agilent Technologies

Compressible

Expands with temperature

Viscosity increases with temperature

Head pressure is constant Flow decreases with temperature

Agilent Technologies

Constant Flow Mode

Carrier gas flow is constant Pressure increases with temperature

Agilent Technologies

Set the velocity at the same temperature

Initial temperature is the most convenient

van Deemter Equation

h = Height equivalent to a theoretical plate

Packed Columns

$h = A + \frac{B}{\bar{u}} + C\bar{u}$

Open-Tubular Columns

 $h = B + C\bar{u}$

A = Multi-path term

- B = Longitudinal diffusion term
- C = Mass transfer term

Groupp/fiftee Start & Biele Clide Agilent Restricted

van Deemter Curve

Agilent Technologies

Groupp/fifteeSantaBielecTide Agilent Restricted

$\overline{\mathbf{U}}_{opt}$ and OPGV

Ū_{opt}: Maximum efficiency

OPGV: Optimal practical gas velocity

Maximum efficiency per unit time

1.5 - 2x \overline{u}_{opt}

VAN DEEMTER CURVE Nitrogen

Agilent Technologies

Agilent Technologies

VAN DEEMTER CURVES

Agilent Technologies

CARRIER GAS Flow Rate (mL/min)

"Volume"

Measurement:

At column exit

Calculate

Electronic Pressure Control (EPC)

"Handy Gizmos" for Flow Measurement:

FID Flow Measuring Insert (p/n 19301-60660)

"Little Red Cap" (p/n 325-0506)

Agilent Technologies

Agilent Technologies

FLOW RATE CALCULATION

Provides average flow rate

$$F = \frac{\pi r^2 L}{t_m}$$

- r = column radius (cm)
- L = column length (cm)
- t_m = retention time of a non-retained peak (min)

NON-RETAINED COMPOUNDS

Detector Compound

FID Methane, Butane

TCD, MS Methane, Butane, Air

ECD Vinyl chloride, SF6

Methylene Chloride (vapors)*

NPD Acetonitrile (vapors)*

PID, ELCD Vinyl chloride

* at elevated temperatures

CARRIER GAS Average Linear Velocity Calculation

$t_m = \frac{L}{\overline{u}}$

- L = column length (cm)
- t_m = retention time of non-retained peak (sec)
- \overline{u} = desired average linear velocity (cm/sec)

$$t_{m} = \frac{L}{\overline{u}}$$
$$t_{m} = \frac{3000 \text{ cm}}{32 \text{ cm/sec}} = 93.8 \text{ sec} = 1.56 \text{ min}$$

$$t_m$$
 = retention time of non-retained peak (sec)

 $\overline{u} = 32 \text{ cm/sec}$

Figuring Carrier Gas Flow Rate – the easy way

USER CONTRIBUTED SOFTWARE

GC Pressure/Flow Calculator Software

http://www.chem.agilent.com/en-US/Support/Downloads/Utilities/ Pages/GcPressureFlow.aspx

RESOLUTION VS. LINEAR VELOCITY Helium

Effect of dimensional tolerances in capillary GC columns

I understand why RT changes occur with "in use" columns, but why with new columns?

- Normal dimensional differences in capillary tubing
 - Length

- Inner diameter
- Minor differences in film thickness (β)
- Variability in phase selectivity (RI)
 - More of an issue with high polarity phases

Capillary Tubing Dimensional Tolerances

Capillary columns manufactured by Agilent Technologies have a general dimensional specification of:

- Length within about 0.5 meter (\approx 1 "loop")
- ID \pm 6 μ m

Variation in internal diameter is a normal distribution around nominal. Approximating the range (12 μ m) as 6 times the standard deviation, there is a 95.5% probability that tubing will be within \pm 4 μ m.

Let's look at the effects of these actual tubing dimensions on the pressures required to maintain retention times for a method...

Relationship of Tubing Dimensions and Pressure: 30m x 0.25mm ID column

<u>L (m)</u>	<u>ID (µm)</u>	<u>P (psi)</u>	<u>% of nominal P</u>		
29.5	255	8.2	82%		
30.0	250	10.0	100%		
30.5	245	11.9	119%		
Conditions:	vacuum outlet (MSD), helium carrier,				
	100°C oven temperture,				
	maintained T_m at 1.38 min				
<u>L (m)</u>	<u>ID (µm)</u>	<u>P (psi)</u>	<u>% of nominal P</u>		
29.5	255	9.3	93%		
30.0	250	10.0	100%		
30.5	245	10.9	109%		
Conditions:	atmospheric outlet (FID), helium carrier, 100°C oven temperture,				
		en tempertur	e,		

Relationship of Tubing Dimensions and Pressure: 12m x 0.20mm ID column

<u>L (m)</u>	ID (µm)	P (psi)	<u>% of nominal P</u>	
11.5	205	6.9	69%	
12.0	200	10.0	100%	
12.5	195	13.5	135%	
Conditions:	vacuum outlet (MSD), helium carrier,			
	100°C oven temperture,			
	maintained T_m at 0.345 min			
<u>L (m)</u>	<u>ID (µm)</u>	<u>P (psi)</u>	<u>% of nominal P</u>	
11.5	205	8.7	87%	
12.0	200	10.0	100%	
12 5	105			
12.0	195	11.5	115%	
Conditions:	195 atmospher	11.5 ic outlet (F	115% I D), helium carrier,	
Conditions:	195 atmospher 100°C over	11.5 ic outlet (F n tempertur	115% I D), helium carrier, e,	

)

"Extremes" denotes combination of smallest ID/longest column and vice versa. (± 1 m length; ± 6 µm ID)

Agilent Technologies

"Extremes" denotes combination of smallest ID/longest column and vice versa. (± 1 m length; ± 6 µm ID)

Agilent Technologies

Impact of Dimensional Differences on Required P

Impact varies inversely with length and ID

- The relative percentage of impact increases as nominal length and ID decrease.

Additionally, vacuum outlet (MSD) greatly exaggerates pressure drop across the tubing. This in turn amplifies the differences in head pressure required to maintain T_m

"I don't use retention time windows. Why should I care if my retention times shift?"

Retention time changes in temperature programmed analyses can also alter the *elution sequence of solutes...*

Solutes elute in an order mandated by their *"net" vapor pressures - i.e., vapor pressures* under their gas chromatographic conditions.

Impact of Dimensional Differences on R

Not only may absolute retention times change, but resolution may change as well due to changes in carrier gas linear velocity (efficiency; HETP)

Net Vapor Pressure

The net vapor pressure is the intrinsic vapor pressure *reduced by the sum of all solute-stationary phase interactions* (e.g., dispersion, proton sharing and dipole interactions, *all of which are influenced by temperature*).

If considerations for the inter-effects of length, diameter and gas velocity are not factored into the method's Standard Operating Procedure (SOP) the end result can be:

- Loss of resolution
- Complete reversal of elution
 - More common in mixtures of disparate functionalities; it does not occur with homologues.
 - Also more common with solutes and stationary phases employing multiple modes of solute-stationary phase interactions.

Agilent Technologies

Example -- Compounds of Interest

d-Camphor, b.p 176-180°C keto function Weak H-Bonding, Van der Waals Linalool b.p. 199°C hydroxy and alkene functions Strong H-Bonding, weak dipole, Van der Waals Linalyl acetate b.p. 220°C acid ester and alkene functions 2 x Weak H-Bonding, weak dipole, Van der Waals

Effects of Head Pressure on Elution Order: 26 psi

Effects of Head Pressure on Elution Order: 30 psi

Column: 20m x 0.10mm ID x 0.2um, DB-WAX

Oven: 50C (0.33 min), 10C/min to 200C and hold

Effects of Head Pressure on Elution Order: 38 psi

Column: 20m x 0.10mm ID x 0.2um, DB-WAX

Oven: 50C (0.33 min), 10C/min to 200C and hold

Temperature Programming

Effect Of Locking Software On Temperature Of Elution

Temperature Programming

Effect Of Locking Software On Temperature Of Elution

Hydrogen is extremely diffusive in air

Difficult to reach explosive level of ~4 %

Many GC's are flow regulated

VAN DEEMTER CURVES

Agilent Technologies

CARRIER GAS Selection Example

Carrier Gas Helium vs. Hydrogen

Hydrogen as Carrier with MSD – Contamination?

Contamination of GC flow modules and lines.

Hydrogen acts as a scrubber.

On the MS this typically looks like Hydrocarbon contamination

Most people report that it takes 2-4 weeks to clean out, depending on flows.

The FID only sees a high background for that time.

Hydrogen seems to scrub the lines of that which Helium leaves behind.

Carrier Gas - Summary

Gas	Advantages	Disadvantages
Nitrogen	Cheap, Readily available	Long run times
Helium	Good compromise, Safe	Expensive
Hydrogen	Shorter run times, Cheap	Explosive

Hydrogen is difficult to explode under GC conditions

Hydrogen is best especially for wide k range analyses

Helium is acceptable

Nitrogen is not recommended

Agilent J&W Scientific Technical Support

800-227-9770 (phone: US & Canada)*

* Select option 3, option 3, then option 1.

866-422-5571 (fax)

www.agilent.com/chem

Agilent Technologies

Wrap-up e-Seminar Questions

Thank you for attending today's Agilent e-Seminar. Our Seminar schedule is expanding regularly. Please check our web site frequently at: www.agilent.com/chem/eseminars

Or register for

to receive regular updates.

Agilent Technologies

Upcoming GC and LC Series e-Seminars

HPLC Column Troubleshooting - Series 2 February 23, 2011 – 2:00pm ET

Advanced Topic: Tips and Tricks of Injector Maintenance March 8, 2011 – 2:00pm ET

> Selection of Capillary GC Columns -Series 3 March 24, 2011 – 1:00pm ET

Agilent Technologies