

Oxygenates

Analysis of trace methanol in hydrocarbons

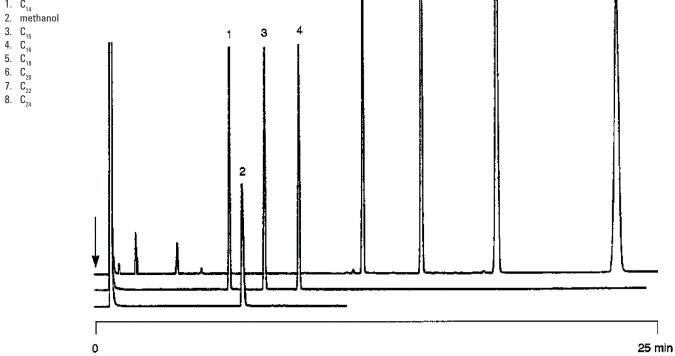
Application Note

Energy & Fuels

Introduction

The Agilent Lowox adsorbent provides very high retention for all types of oxygenated compounds, see Application note 1362. The methanol elutes after n- $C_{14'}$ having a retention index of ca. 1430. This component can be measured at low levels in a range of hydrocarbon streams. Also, the change of retention index of methanol if analyzed at different temperatures is small. If analysis is done at 200 °C, methanol has an RI of ca. 1435, while at a temperature of 290 °C the methanol has a retention index of ca. 1470. For a highly polar phase these shifts in RI are very small. This results in reduced risk of peak swapping and possible misidentification.

The chromatogram also shows the $\rm C_{_{24}}$ hydrocarbon eluting as a nice peak. Although this is a highly polar phase, the heavy hydrocarbons elute as sharp peaks. Also note the straight baseline.



Authors

Agilent Technologies, Inc.

Conditions

Technique	: GC-wide-bore
Column	: Agilent Lowox, 0.53 mm fused silica PLOT (Part no. CP8587)
Temperature	: 175 °C (2 min) → 290 °C, 10 °C/min
Carrier Gas	: He, 70 kPa (0.7 bar, 10 psi)
Injector	: Split via Valco valve, T = 250 °C
Detector	: FID T = 250 °C
Concentration Range	: ca. 100 ppm 6 7
	5
Peak identific	ation ⁸
1. C ₁₄ 2. methanol	

www.agilent.com/chem

This information is subject to change without notice. © Agilent Technologies, Inc. 2011 Printed in the USA 31 October, 2011 First published prior to 11 May, 2010 A01363

Agilent Technologies