SHIMADZU

Selective and Sensitive Analysis of 20 Category I and II Residual Solvents for Cannabis Application using Headspace-GCMS

Leyda Z. Lugo-Morales, Alan Owens, Yuan Lin, Kyle Reddick, Nicole Lock, Richard Karbowski - Shimadzu Scientific Instruments, Inc., Columbia, MD, USA Caligreen Cannabis Testing Laboratory, North Hollywood, California, USA*

1. Introduction

In the cannabis industry, many different solvents are used in the extraction process, each one classified based on the level of toxicity. Also, sample preparation is difficult with cannabis matrices due to their lack of solubility, and the limitation of available non-interferent diluent solvents. The ideal way for testing is direct analysis of the sample in a headspace vial without any sample preparation involved. However, this can be challenging if high sample amounts are required. Furthermore, other method development challenges exist, such as co-elution of several residual solvent analytes or mass-to-charge interferences from the environment. Finding an acceptable balance between proper separation for unequivocal identification and quantitation, and reasonable analysis throughput time can be complicated. The work described herein demonstrates the viability of headspace GC-MS with SIM mode for the analysis of twenty Category I and II residual solvents, including three soluble gases, which may be present in cannabis products.

2. Experimental Methods

A 6-point calibration curve was created from CPI Category I and II standards. An aliquot of 150 µL was placed in a 20 mL headspace vial and capped. Butyl acetate was used as diluent solvent. Concentration ranges and calculated sample amounts are listed in Table 1. Quality Control standards were prepared by weighing a minimum of 250 mg of methyl cellulose (substitute matrix), and spiked with residual solvents standards to obtain a Level 5 concentration in the QC samples tested.

Table 1. Target Residual Solvents (left table) and Calculated Amounts for Calibration Curve Standards (right table).

Category I (action limit = $1 \mu g/g$)	Category II (action limit > 1 µg/g)	Calibration Cu
1,2-Dichloroethane	Acetone	Category I Re
Benzene	Acetonitrile	Calibrato
Chloroform	Butane	Calibrato
Ethylene oxide	Ethanol	Calibrato
Methylene chloride	Ethyl Acetate	Calibrato
Trichloroethylene	Ethyl ether	Calibrato
	Heptane	Calibrato
	Hexane	Category II Re
	Isopropyl alcohol	Calibrato
	Methanol	Calibrato
	Pentane	Calibrato
	Propane	Calibrato
	Toluene	Calibrato
	Total xylenes (ortho-, meta-, para-)	Calibrato

Category I Residual Solvent			
Calibrator Level 1	0.781	0.150	0.117
Calibrator Level 2	1.563	0.150	0.234
Calibrator Level 3	3.125	0.150	0.469
Calibrator Level 4	6.25	0.150	0.938
Calibrator Level 5	12.5	0.150	1.875
Calibrator Level 6	25.0	0.150	3.75
Category II Residual Solvent			
Calibrator Level 1	312.5	0.150	46.875
Calibrator Level 2	625	0.150	93.75
Calibrator Level 3	1250	0.150	187.5
Calibrator Level 4	2500	0.150	375
Calibrator Level 5	5000	0.150	750
Calibrator Level 6	10000	0.150	1500

e Standards |Concentration (µg/mL)|Volume in vial (mL)|Amount (

3. Analytical Conditions

Table 2. System Configuration and Instrument Parameters.

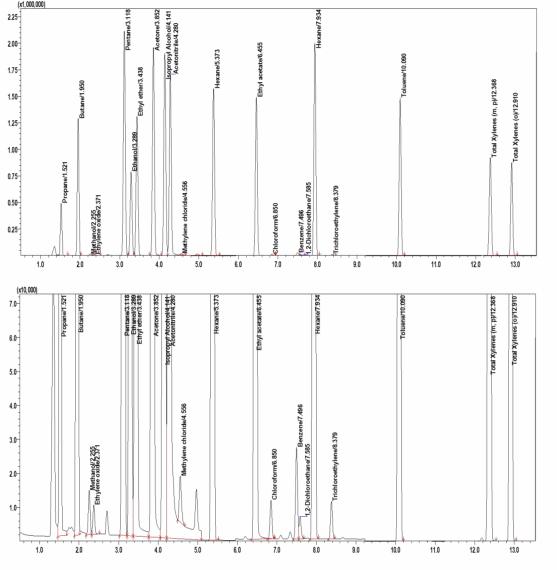

Headspace	HS-20 Loop Model	
Operation Mode	Static headspace with loop	
Sampla	150uL sample volume	
Sample	20-mL headspace vial	
Equilibration	15.00 minutes at 120°C	
	0.2-mL Loop	
Sample Loop	Vial pressure 350kP, Pressurizing Time-1.50 mir	
Sample Loop	Loop load time 0.20 min, equilibration 0.20 min	
	Injection time 0.20min	
Sample Line Temperature	150°C	
Transfer Line Temperature	150°C	
Gas Chromatograph	GC-2010 Plus or 2030 NX	
Injection	Split injection from HS-20, with 50:1 split ratio	
	Rxi-624 Sil MS 30.0m x 0.25 mm x 1.40 um	
	Helium carrier gas	
Column	Constant linear velocity, 39.9cm/sec	
	Column Flow 1.24mL/min	
	Purge flow 0.0mL/min	
	30°C, hold 3.0 min	
	10°C /min to 140°C, hold 0.0 min	
Oven Program	45°C /min to 200°C , hold 1.0 min	
	Total GC run time 16.33 min	
	Total GC cycle time: 25.00 mins	
Jan.		
Detector	GCMS-QP2010 SE or 2020 NX	
Operation Mode	Selected Ion Monitoring Mode (SIM)	
Ion Source	200°C, El mode, 70eV	
Solvent Cut Time	0.1 min	
MS Interface	300°C	

Figure 1. Shimadzu GCMS-QP2020 NX with HS-20 autosampler.

4. Calibration Curve and QC Results

Figure 3. Top Left Panel – Representative image of Total Ion Chromatogram (TIC) showing the 20 Residual Solvent peaks analyzed in a standard sample. Bottom Left Panel – Zoomed-in version to show smaller solvent peaks. Right Panel – Representative images of selective ion monitoring (SIM) m/z ion peaks for each residual solvent analyzed in the standard sample and its associated calibration curve.

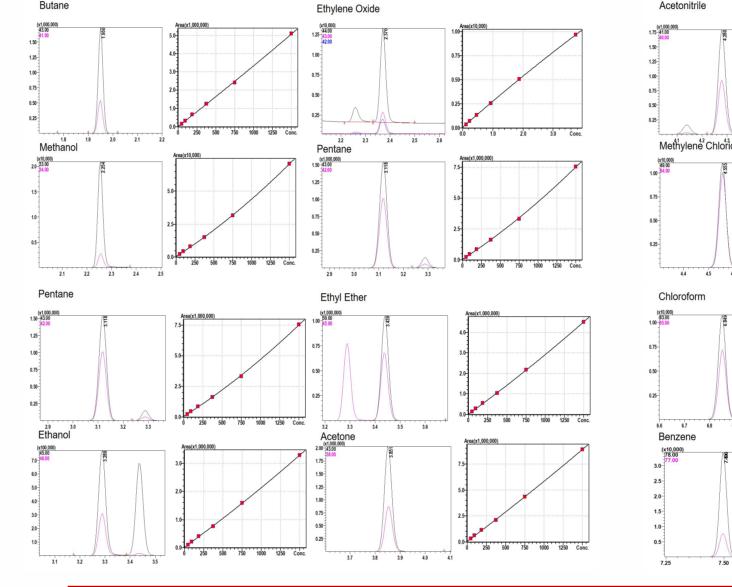

	Accuracy % (Criteria: 80-120% for Standards)			R ²	
Residual Solvents Calibration	Lowest Level in Cal Curve	Result	Highest Level in Cal Curve	Result	(Criteria: ≥
Curve Standards	(ug)	(%)	(ug)	(%)	0.99)
Propane	46.875	97.46	1500	100.40	0.9991
Butane	46.875	91.54	1500	100.61	0.9989
Methanol	46.875	92.07	1500	100.24	0.9996
Ethylene Oxide	0.117	93.56	3.75	100.15	0.9996
Pentane	46.875	91.19	1500	100.43	0.9993
Ethanol	46.875	94.71	1500	100.03	0.9997
Ethyl Ether	46.875	96.21	1500	99.95	0.9997
Acetone	46.875	94.54	1500	100.03	0.9996
Isopropanol	46.875	96.44	1500	99.85	0.9996
Acetonitrile	46.875	89.69	1500	100.47	0.9990
Methylene Chloride	0.117	99.04	3.75	100.07	0.9998
Hexane	46.875	91.67	1500	100.27	0.9996
Ethyl Acetate	46.875	97.59	1500	99.73	0.9994
Chloroform	0.117	100.12	3.75	100.00	1.0000
Benzene	0.117	99.58	3.75	99.99	0.9999
1,2-Dichloroethane	0.117	98.64	3.75	99.98	1.0000
Heptane	46.875	94.04	1500	100.10	0.9999
Trichloroethylene	0.117	100.67	3.75	99.93	0.9997
Toluene	46.875	104.01	1500	99.32	0.9984
Total Xylenes (m, p, and o)	46.875	109.97	1500	99.02	0.9964

Table 4. Recovery % results for spiked QC samples.

Residual Solvents	
Quality Control Standards	ICV (level 5; %)
Propane	
Butane	
Methanol	
Ethylene Oxide	
Pentane	
Ethanol	
Ethyl Ether	
Acetone	
Isopropanol	
Acetonitrile	
Methylene Chloride	
Hexane	
Ethyl Acetate	
Chloroform	
Benzene	
1,2-Dichloroethane	
Heptane	
Trichloroethylene	
Toluene	
Total Xylenes (m, p, and o)	

Table 3. Accuracy % and R² results for calibration curves.

Recovery % (Criteria: 70-130% for spiked QC's)				
	````````````````````````````````		MS (level 5; %)	
109.27	106.68	105.23	101.03	
109.68	106.53	105.83	101.22	
109.11	105.78	88.00	83.33	
106.61	101.09	94.18	87.46	
107.83	104.79	104.84	100.93	
107.19	104.95	88.56	83.77	
104.80	101.74	100.72	97.26	
104.63	103.22	97.54	93.28	
104.34	102.80	92.49	88.08	
108.30	107.54	93.25	88.30	
102.65	99.70	94.46	90.08	
106.91	104.14	106.12	102.74	
100.91	100.51	100.27	96.56	
100.92	99.77	96.66	93.66	
100.25	99.27	98.73	95.10	
98.80	97.66	96.95	92.56	
102.68	101.70	108.45	105.40	
101.75	99.05	100.95	97.05	
95.80	96.28	99.92	96.64	
91.29	92.71	98.08	95.36	



# 5. Cannabis Sample Application

The images shown on Figure 4 provide a visual example of the many varying types of concentrate and pre-roll samples that are received in the laboratory for the state-required residual solvent analysis. Headspace analysis is ideal for these types of samples because of the high volatility of residual solvents. These sample types can be weighed and analyzed directly in a headspace vial. Therefore, minimizing the amount of manual sample handling required and time spent in sample preparation.

Figure 4. Picture of some of the variety of concentrate and pre-roll samples received in cannabis testing laboratories for the analysis of residual solvents.



A representative portion of at least 250mg in sample size taken from the pre-roll sample shown in Figure 4 was weighed in a 20mL headspace vial for residual solvent headspace analysis using GC-MS. The results from the analysis are shown in Figure 5. Ethanol, methanol, acetone, isopropanol, and acetonitrile were identified in the sample, but with a quantitation result below the State regulated action level for each of these residual solvents. Therefore the sample passed the residual solvents test

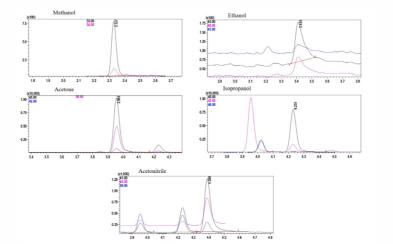
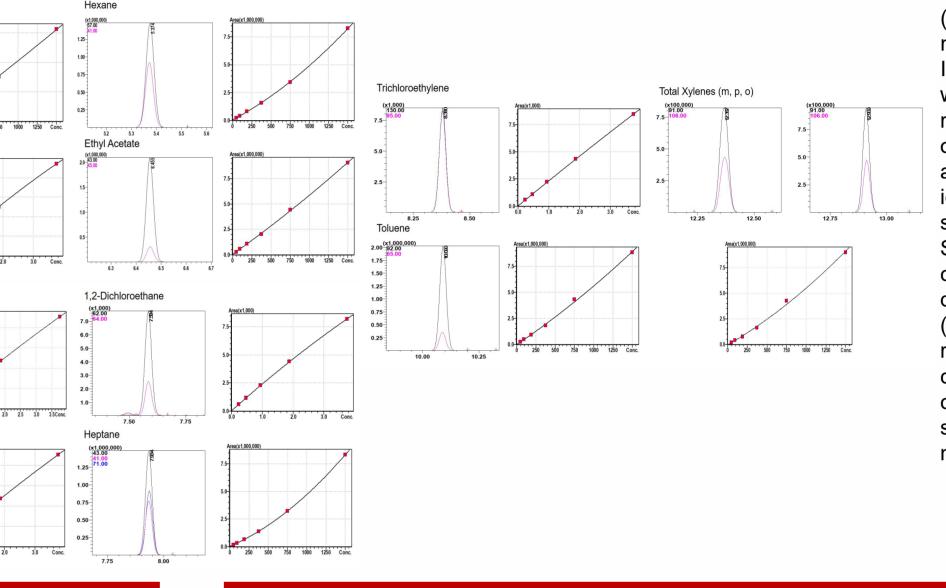
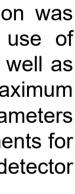
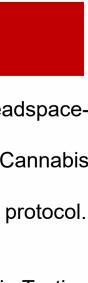




Figure 5 . Representative GC-MS SIM chromatograms for the Category II residual solvents methanol, ethanol, acetone, isopropanol, and acetonitrile found in an aliquot sample from the preroll pictured in Fig. 4.




All 20 Residual Solvents can be identified with the SCAN method (Figure 3 Left Panel). In order to meet state action limit for Category I residual solvents, a SIM method was needed. Complete peak resolution is not required when operating in SIM mode. A target ion and a minimum of one reference ion were selected for each residual solvent for quantitation using the SIM method developed. The calibration curves were based on a quadratic fit with 1/C weight factor (Figure 3 Right Panel). Accuracy % results for the external standard calibration curve met acceptable criteria (Table 3) for all residual solvents, and spiked QC samples met recovery % criteria (Table 4).

### 6. Conclusions


- In this poster, a GC-MS method using Selected Ion Monitoring (SIM) with headspace injection was developed for the analysis of cannabis concentrates. This includes the identification and use of appropriate standard mixes and diluent solvents for simple preparation of calibration curves, as well as method optimization to eliminate or minimize co-elution and ambient interferences for maximum sensitivity and accuracy in quantitation, all without compromising run time. Moreover, method parameters and hardware configuration changes were performed to accommodate high sample size requirements for compliant testing. These were conducted to avoid analytical column overloading and MS detector saturation, while directly testing sample without preparation steps.
- Results showed good coefficient of determination and accuracy % for calibrator standards. The curve fit type used is Quadratic with a 1/C weighing regression. All QC samples (Initial Calibration Verification, Continuing Calibration Verification, Laboratory Control Sample, and Laboratory Replicate Sample) showed good recovery %.

### 7. References

- "Analysis of Residual Solvents Class 1, Class 2A, Class 2B in Pharmaceuticals using Headspace-GC/MS", Shimadzu's application note.
- "A Fast, Simple FET Headspace GC-FID Technique for Determining Residual Solvents in Cannabis Concentrates", Restek's application note.
- "Protocol for Quantitative Determination of Residual Solvents in Cannabis Concentrates", Restek's protocol. Current BCC Cannabis Regulations (January 2019), https://www.bcc.ca.gov/law_regs/cannabis_order_of_adoption.pdf
- Photos shown in Figure 4, and GC-MS data shown in Figure 5 are courtesy of Caligreen Cannabis Testing Laboratory in South California.





