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Abstract

A model was constructed that predicts whether an olive oil will pass the extra virgin
sensory test. Using the Agilent 7890A GC system coupled to the Agilent 7200 series
accurate-mass Q-TOF MS in both electron ionization (El) and positive chemical
ionization (PCl) modes, a large number of compounds was found in olive oil. Mass
Profiler Professional software was used to perform statistical analysis and construct
a classification model that uses the presence of five specific compounds to accurately

predict whether an olive oil would fail the sensory test.
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Introduction

The demand for olive oil is growing rapidly in the United
States, driven by an increased interest in Mediterranean foods
as well as the health benefits associated with olive oil. The
US market is expected to surpass $1.8 billion by 2013 [1].
Olive oil is thought to be responsible for the longevity of
southern European populations and their low rates of heart
disease. In fact, the Food and Drug Administration (FDA)
approved a health claim for monounsaturated fat from olive oil
and reduced risk of coronary heart disease. Recent studies
have attributed the anti-inflammatory benefits of olive oil
primarily to the extra virgin olive oil (EV0OO) obtained from the
first pressing of the oil, because few foods are as rich in
antioxidants and anti-inflammatory compounds.

The International Olive Council (I0C) and USDA have estab-
lished standards for the classification of EVOO, including a
sensory test conducted by a tasting panel and chemical tests.
However, recent studies [2] have stated that imported olive
oils, which account for 99% of the EVOO on the US market,
often fail the sensory test for EVOO classification. Moreover,
the sensory tests are expensive and subjective.

Given the growing demand and the size of the EVO0 market in
the US, there is value in developing a chemical screen that
could predict whether an olive oil would pass the sensory
test. This would allow producers to submit only those olive
oils for sensory testing that have a high probability of passing.
Such a chemical screen could also reduce certification costs
and time, while increasing the quality of the EVOO available in
the marketplace.

This application note demonstrates the feasibility of develop-
ing a model that can predict whether an olive oil will pass the
sensory test. It uses a nontargeted compound analysis
approach similar to that recently used for wine classification
[3]. The data were obtained in both electron ionization (El)
and positive chemical ionization (PCI) modes, using the
Agilent 7890A GC system coupled to the Agilent 7200 series
accurate-mass Q-TOF MS. Chromatographic deconvolution
was performed using Agilent MassHunter software, while fur-
ther statistical analysis and construction of the classification
model were accomplished with Mass Profiler Professional
(MPP). The accumulation of five specific compounds in an
olive oil sample correlated with a failed sensory test.

Experimental

Reagents and Standards
Cyclohexane, spectrophotometric grade, Sigma-Aldrich.

Samples

In total, 10 olive oil samples were obtained from the UC Davis
Olive Center. All of these samples had been subjected to 10C
sensory test using a panel sanctioned by the I0C to determine
if they passed or failed the criteria for EVOO. They were
stored in the dark at room temperature. The samples were
diluted 1:10 in cyclohexane, injected into the GC with a 1:10
split, and analyzed in random order.

Instruments

This study was performed on an Agilent 7890A GC system
coupled to an Agilent 7200 series GC/Q-TOF system. The
instrument conditions are listed in Table 1.

Table 1. GC and MS Conditions

GC run conditions

Column DB-5 MS, 30 meter, 0.25 mm id,
0.25 pm film (p/n 122-5532)

Injection volume 1L

MMI Injector 50 °C for 0.01 minute

600 °C/min to 300 °C

Purge to split vent 60 mL/min at 1 minute

45 °C for 4.25 minutes
5 °C/min to 75 °C, 0 minute hold
10 °C/min to 320 °C, 10 minute hold

Oven temperature program

Carrier gas Helium at 1.3 mL/min constant flow

Transfer line temperature 290 °C

MS conditions

lonization mode El, positive Cl (20% methane flow)

Source temperature 230 °C
Quadrupole temperature 150 °C
m/z range 40 to 800 m/z

5 Hz, collecting both in centroid and profile
modes

Spectra acquisition rate



Data Processing and Statistical Analysis

MassHunter Qualitative Analysis (version B.05 SP1) was used
for data processing. Peaks were found by the chromato-
graphic deconvolution tool in MassHunter. The mass and
compound filters were adjusted so that one to three hundred
components were identified by the software. In order to
import deconvoluted data into MPP, CEF files were generated
using the MassHunter export tool.

Mass Profiler Professional (version 2.1.5) was used for statis-
tical analysis. The data processing steps were as follows:

1. Setting the importation filters and alignment parameters
2. Selecting normalization criteria

3. Defining the sample groups

4, Setting data filters

5. Evaluating data clustering with a PCA plot

Once these steps were completed, the data were evaluated
through statistical tools such as fold-change and significance
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analysis. The final analysis steps were to construct and test a
classification model. Further data processing included identifi-
cation of the compounds used in the model by mass spectral

library search and assignment of molecular formula estimation.

Results and Discussion

Data Acquisition and Processing

The analysis of EVOO samples was performed to survey the
compounds that could be detected by GC/Q-TOF. Typically,
approximately 150 peaks were identified in MassHunter by
chromatographic deconvolution (Figure 1). A cold split injec-
tion was used, and the inlet temperature was ramped from 50
to 300 °C to minimize thermal decomposition. The initial oven
temperature ramp was 5 °C per minute in order to better sepa-
rate the early eluting peaks.

Peak detection was performed in MassHunter using deconvo-
lution. The MassHunter export tool was then used to generate
CEF files that could be imported into Mass Profiler
Professional (MPP) software.
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Figure 1.

Typically, approximately 150 peaks are identified by chromatographic deconvolution with a relative area filter of 0.1% of largest peak.



The Extracted lon Chromatograms (EICs) were aligned in
MPP. The alignment was based on spectral pattern and reten-
tion time. The extracted spectra needed to have a cross corre-
lation factor of 0.6 and a retention time match of 0.05 minutes
to be considered the same component. The mass versus
retention time plot in Figure 2 indicates that 442 unique enti-
ties were identified in the olive oil samples. Most of them
occur only once or twice and were removed during the data
filtering step.

Once the sample groups were defined, data filters were set in
MPP. Entity filtering permits the creation of a higher quality
data set, so that subsequent multivariate analysis is more
meaningful. The first filter determined which entities (com-
pounds) were in at least one group 100% of the time (fre-
quency analysis). This frequency filter reduced the number of
tentative markers from 442 entities to 91.

Statistical Analysis

Statistical analysis for marker discovery is often tedious and
time intensive when using complicated statistical software
written to handle ASCI or text type results. MPP is ideal for
the sophisticated data management, filtering, statistical
analysis, interpretation, model creation, and prediction
required to efficiently utilize complex and “noisy” data. It pro-
vides an easy-to-follow guided workflow that helps the user
decide how best to evaluate the data, and expert users can go
directly to the data processing they wish to use (see the
Mass Profiler Professional brochure 5990-4164EN for further
details).

Principle Component Analysis (PCA) is a frequently employed
unsupervised multivariate analysis technique enabling data
dimensionality reduction, while retaining the discriminating
power in the data.
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Figure 2. This mass versus retention time plot shows that 442 unique compounds were distinguished by chromatographic deconvolution, most of which occur

only once or twice and are filtered out by MPP. The low frequency components are shown in red while the higher frequency components are shown

in blue.



It is performed through the transformation of measured vari-
ables into uncorrelated principal components, each being a
linear combination of the original variables. It is used as a
quality control tool to provide an idea of how the data clusters
and identify sample outliers. PCA of the entities that varied in
amount between the sensory test pass and fail samples con-
firmed distinctive grouping of the data (Figure 3).

Fold Change and Statistical Significance

Once two classes of data were identified corresponding to
olive oil samples that passed and failed the sensory test, sta-
tistical analysis was performed. The amount of fold-change
(increase) in the concentration of any given compound was
determined first. This analysis identified entities with large
abundance differences between the selected data classes,
that is, those that differed in concentration by two fold, three
fold, four fold, and so forth between pass and fail EVO0
samples.

Next, Analysis of Variance (ANOVA) was used to determine if
the differences between those compounds that met the fold
change criteria were statistically significant. Using a probabil-
ity p value of 0.01, the 91 entities from the frequency filter
were reduced to five significant compounds. The results of
fold change analysis and ANOVA are displayed as a Volcano
Plot (Figure 4). The five compounds with the lowest p values
and highest fold-changes were selected for construction of
the classification model.

Classification Model

The goal of classification is to produce general hypotheses
based on a training set of examples that are described by sev-
eral variables and identified by known labels corresponding to
the class information. The task is to learn the mapping from
the former to the latter. Numerous techniques, based either
on statistics or on artificial intelligence, have been developed
for that purpose [4]. In this case, the goal was to predict
which olive oil samples would fail the sensory test, based on
the five compounds that were shown to be associated with
failure to pass the test.

Partial Least Square (PLS) analysis is particularly adapted to
situations where there are fewer observations (that is,
number of samples) than measured variables (for example
detected entities, m/z). Its use has become very popular due
to its ability to deal with many correlated and noisy variables.
Partial Least Square Discrimination Analysis (PLSDA) is used
to sharpen the partition between groups of observations,
such that a maximum separation among classes is obtained,
and has become a potent tool for the classification of
metabolomics data [4]. Therefore, PLSDA was used to
construct the olive oil classification model.
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Figure 3.

Principal Component Analysis (PCA) shows how data clusters.
The samples that failed the sensory test are marked in red and
the ones that passed are blue.
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Figure 4. The Volcano Plot shows fold-change for each entity on the x-axis

and significance on the y-axis. These five compounds are
accumulated in the samples that failed the sensory test.



Having established two data classes with the five compounds
that were selected through processing with MPP, the next
step was to create a model that could predict whether an
olive oil sample would pass the sensory test. The first step in
building the classification model was to train the model with
the data (Figure 5).

To test the model, the same training data as well as samples
not included in the construction of the model were used.
Although redundant, this is a valid statistical procedure. The
same class prediction model was used for the validation of
the trained model. The accuracy of the model for this limited
number of samples, including those not used to construct the
model, was 100% (Figure 6). These results demonstrate the
feasibility of developing a model to accurately predict whether
an EVOO would pass the sensory test.

Identifier Training Predicted(Training) Confidence
CSC1-EI-1: 1g2 [F, Training] [F, Training] 1.000
FSW2-El-1: 1g2 [F, Training] [F, Training] 1.000
ESC1-El-1: Ig2 [P, Training] [P, Training] 1.000
ESC2-El-1: Ig2 [P, Training] [P, Training] 1.000
RSA1-El-1: Ig2 [P, Training] [P, Training] 1.000
Figure 5. PLSD training set which contains representatives from each of the three clusters found in the PCA plot.

Prediction Results a
Identifier Grade Training Predicted(Class Pre... Confidence
PAC1-EI-1: Ig2 F None [F, Training] 1.000
ESCZ2-EI-1: 1g2 P Training [P, Training) 1.000
ESC1-EI-1: 1g2 P Training [P, Training] 1.000
SAC1-El-1: Ig2 F MNone [F, Training] 1.000
RFC2-EI-1: 192 P MNone [P, Training] 1.000
RSAZ-EI-1: 1g2 P Mone [P, Training] 1.000
CSC1-EI-1: Ig2 F Training [F, Training] 1.000
RSEAL-EI-1: Ig2 P Training [P, Training] 1.000
EFC1-EI-1: Ig2 P MNone [P, Training) 1.000
FSW2-El-1: 192 F Training [F, Training] 1.000

Figure 6. The model correctly predicted the pass or fail status of all samples, including those not used to construct the model. The samples that were not used

for building the prediction model are listed with the Training variable set as ‘None".



Identification of Compounds

The advantage of an instrument such as the Agilent 7200
series GC/Q-TOF is that it can collect data in El, Cl, and
Product lon Scan modes. These orthogonal modes of opera-
tion aid confirmation. El spectra allow library searching and
provide fragmentation data; Cl provides information about the
empirical formula, and Product lon Scan MS/MS generates
data for an accurate mass substructure search that can be
applied to El or Cl generated ions.

While it is not necessary to know the identity of the com-
pounds used in the classification model, identification could
lead to an understanding of the mechanism by which those
chemical components might, directly or indirectly, adversely
affect the sensory qualities of olive oil. The Agilent 7200
series GC/Q-TOF offers a strong advantage for compound
identification (ID) by providing accurate mass structural
information.

Agilent MassHunter Qualitative Software was used to per-
form accurate mass chromatographic deconvolution and
extract clean spectra from interfering peaks. These El spectra
were then searched against the NIST database (Figure 7).

El spectra of all except the last compound were found to have
a corresponding match. Although the fragmentation patterns
were consistent, the match factors were lower than those
that would be obtained with a quadrupole-based instrument,
since most of the data in the NIST library comes from quadru-
pole mass spectrometers. The two types of mass spectrome-
ters exhibit optimal performance at different mass ranges, as
the response of the quadrupole-based instrument is optimal
at a lower mass range than that of the time-of-flight.

%108
557 105.0698
607 119.0853
5.5-]
504 161.1320
45|
2 40 91.0539
S 35
(=]
S 3.0
2.5
2.0
154 84.0694
104 133.1005
05 65.0382 l ‘ J l 204.1864
0 : : ‘|._ Ll .”.I‘. . |‘.. . Il ‘_lllll._ ||| ||. .|H| . \"'I'I"I" .1‘ A !I : |. : : :
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
Mass-to-charge (m/z)
105
100 | n3 161
b 91
50 N |
i 133
“a ___ & & Ll ||. N (TR A T | 145 A 189 204
0 T .||,. iy T | = Hi T T Gt i T
: | 133 145 175 189
55 6 204
50 41 81 91
100 105 119 161
d
| | | | | | | | | | | | | | | | [N |
40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210
I&Cpd 16: 18,165 El Compound Spec Head to Tail MF=865 RMF=865 | ¥ a-Cubebene

Figure 7.

Commercial unit mass El spectral libraries like Wiley and NIST can be searched using accurate mass El GC/Q-TOF data to identify compounds.



Accurate mass information available for El ions helped to
confirm tentative identifications for accumulated compounds,
with a mass accuracy below 5 ppm for all but one of the com-
pounds, which lacked a prominent molecular ion (Figure 8).

Using the positive Cl accurate mass data, a molecular formula
for each marker compound was generated (Figure 8). This
data confirmed the molecular formula of the fifth compound
(bottom row), due to the fragmentation pattern observed. In
addition to the expected peak at 227 m/z and its (M+C;Hg)+
PCl adduct, a 209 m/z fragment, which is consistent with the
loss of H,0, was observed. The presence of a 191 m/z frag-
ment indicates the loss of a second water molecule. This data
leads to the hypothesis that the compound is a diol with an
empirical formula of C,,H,40,. The mass accuracy for this
compound is just above 8 ppm, consistent with the low signal
intensity. A search for the properties of the four compounds
identified by the NIST database search determined that they
may all have scents that contribute to the flavor of the olive
oil and result in its failure to pass the sensory test (Figure 9).

El, M*+ PCI, [M+H]+
Mass Error Mass Error
MPP ID Tentative NIST ID NIST Match | Formula CAS Calculated | Measured (ppm) Calculated | Measured (ppm)
55.0@27.546 |n-Hexadecanoic acid 789 CigH300, | 57-10-3 256.2397 | 256.2385 47 257.2475 257.2470 1.9
73.0@29.750 |Octadecanoic acid, ethyl ester 703 CooHye0y | 111-61-5 | 312.3023 | 312.3008 4.8 313.3101 313.3091 32
81.0@35.731 [Squalene 831 CaoHsy 111-02-4 410.3907 410.3904 0.7 411.3985 411.3987 0.5
105.0@20.906 |@-Cubebene 880 CisHyy | 17699-14-8 | 204.1873 204.1883 4.9 205.1951 205.1945 2.9
71.0@27.260 |Not in NIST Database N/A Cy4H260, N/A 226.1927 ND ND 227.2006 227.1987 8.4
Figure 8. PCI spectral data provided accurate mass information for molecular ions of the accumulated compounds in olive oils that fail the sensory test,

including the case where the El spectrum showed no prominent molecular ion (last row).

MPP ID Tentative NIST ID NIST Match | Formula CAS Odor Source
55.0@27.546 |n-Hexadecanoic acid 789 CigH3,0, | 57-10-3 | Faint Oily |Bedoukian Research
73.0@29.750 |Octadecanoic acid, ethyl ester 703 CygHag0, 111-61-5 Waxy |The Good Scents Company
81.0@35.731 |[Squalene 831 CagHso 111-02-4 Floral |The Good Scents Company
105.0@20.906 |a-Cubebene 880 Ci5Hys 17699-14-8 Herbal |The Good Scents Company
Figure 9. A list of the odor characteristics of four of the identified compounds associated with failure of the sensory test.




Structure Confirmation using Molecular
Structure Correlator

Q-TOF product ion spectra can help verify that all the frag-
ment ions generated can be correlated to the proposed struc-
tural isomer. The Molecular Structure Correlator performs a
substructure search of the ChemSpider database and corre-
lates the results to all the possible structural isomers. Each
individual fragment ion is ranked based on mass error corre-
sponding to the proposed formula, along with a penalty based
on how many bonds needed to be broken to generate that
proposed formula. An isomer’s individual Compatibility Score
is a weighted average of the fragment ion scores, taking into
account the intensity and the mass of each fragment ion
(Figure 10).

Note that this tool is complementary to the El library search
which clearly identifies the peak at 29.75 minutes as being an
ethyl ester. The best match for the compound at

29.75 minutes is ethyl octadecanoate. The Molecular
Structure Correlator shows that the product ions of the

312 m/z precursor correlate well to ethyl octadecanoate, with
a compatibility score greater than 98 (Figure 10). Moreover,
the accurate masses of the fragments correlate well to the
expected masses, with all fragments being within mass error
of 5 ppm. This provides additional supporting information for
compound identification.
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Figure 10. Molecular Structure Correlator compares the Q-TOF product ion spectra to the structural isomers of the empirical formula. It determines which
product ions correlate to fragments of the isomers and generates a compatibility score.



Conclusions

Using accurate mass El and positive Cl scan data generated
by the Agilent GC/Q-TOF system, a model was constructed
that accurately predicted whether an olive oil would pass the
sensory test. Although it was constructed using a very small
sample set, it demonstrates the feasibility of this approach. A
predictive model constructed using a significantly larger
sample size would give olive oil producers an inexpensive,
quick test to determine whether their oil would pass the sen-
sory test, thus avoiding the costly and time-consuming sen-
sory testing of inferior oils. The identification of compounds
accumulated in EVOOs that fail the sensory test as scents
lends credibility to their negative contribution to the flavor of
olive oil. This approach could also conceivably be used to
construct a model that could predict whether an olive oil has
been adulterated with other less expensive oils.
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For More Information

These data represent typical results. For more information on
our products and services, visit our Web site at
www.agilent.com/chem.
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