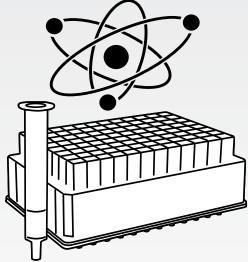

The Complete Guide to Solid Phase Extraction (SPE)

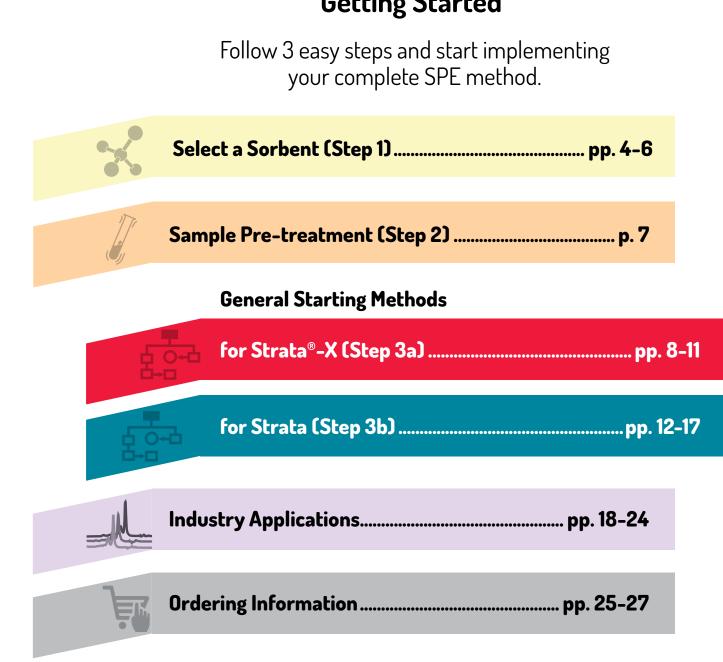
strata

⊜strata


A method development and application guide

Solid Phase Extraction (SPE)

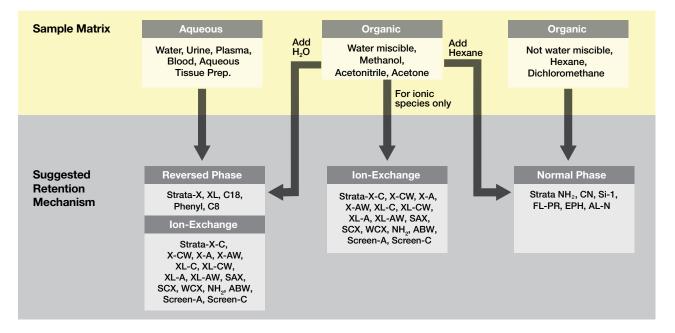
Solid Phase Extraction (SPE) is a very targeted form of sample preparation that allows you to isolate your analyte of interest while removing any interfering compounds that may be in your sample.



- Ultra clean extracts
- Concentration of samples for better chromatographic results
- Solvent switching for GC or LC compatibility
- Longer column lifetime and improved chromatographic results

www.phenomenex.com/SPE

Strata®-X or Strata SPE products do not perform as well or better than your current SPE oduct of similar phase, mass and size, return the product with comparative data within 45 days for a FULL REFUND.


Getting Started

Step 1

Select a Sorbent

Selecting The Right Sorbent: Strata[®] Silica-Based and Strata-X Polymer-Based Sorbents

Identify the SPE Retention Mechanism

Determine the Sorbent Chemistry

SPE Mechanism	Analyte Functional Group	Sorbent Functional Group	Strata-X Sorbent	Strata Sorbent
Reversed Phase	R hydrocarbon OOO aromatic	R hydrocarbon O aromatic	X, XL	C18-E, C18-U, C8 C18-T Phenyl, SDBL
Normal Phase	R - OH hydroxyl R - NH ₂ amino	CN polar OH polar		CN, NH ₂ Si-1, CN, EPH
Ion-Exchange	NR₄⁺ strong RNH₄⁺ weak RSO₃⁻ strong RCO₂⁻ weak	-O₂C—weak -O₃S—strong ⁺H₃N—weak ⁺R₃N—strong	X-CW, XL-CW X-C X-AW, XL-AW X-A, XL-A	WCX Screen-C, SCX NH ₂ Screen-A, SAX

Sorbert Properties

Table 1a. SPE Overview	Strata-X	Strata
Increase Detection Sensitivity by removing matrix contaminants	•	•
Increase Column Lifetime by removing matrix contaminants	•	•
Quality Guaranteed by more than 20 QA and QC measures	•	•
Increase Reproducibility with robust methods	•	•
Save Time by processing multiple samples simultaneously or automating method	•	•
Specific Selectivity for your target analytes	•	•
Decreased Solvent Consumption with the highest loadability	•	
Decreased Blow-down Time with smaller elution volumes	•	
Decreased Sample Variation with deconditioning resistant sorbent	•	
pH Stable from 1-14	•	

Table 2a. Select Your Particle and Pore Size

	Strata-X, X-C, X-A, X-CW, X-AW	Strata-XL, XL-C, XL-A, XL-CW, XL-AW
Particle & Pore Size	33µm, 85Å	100µm, 300Å
High Concentration Samples	•	
Small Target Analytes (< 10 kDa)	•	
Large Target Analytes (> 10 kDa)		•
Large Volume Samples		•
Viscous Samples		•

Table 3a. Polymer-Based Sorbents Loading Capacities

Sample Matrix	Sorbent Mass	Strata-X, X-C, X-CW, X-A, X-AW	Strata-XL, XL-C, XL-CW, XL-A, XL-AW
Blood, serum, plasma	30 mg	250 µL	125 µL
Urine	30 mg	1 mL	500 µL
Filtered tissue homogenates	60 mg	100 mg	50 mg
Environmental Samples	Sorbent Mass	Strata-X, X-C, X-CW, X-A, X-AW	Strata-XL, XL-C, XL-CW, XL-A, XL-AW
Water (particulate-free) drinking	200 mg	100 - 400 mL	50 - 200 mL
Water (particulate-laden) rivers, runoff, etc.	500 mg	100 - 400 mL	50 - 200 mL
Soil extracts	500 mg	100g	50 g

Table 4a. Sorbent Wash and Elution Volumes*

The volume of solvent needed for the wash and elution steps is directly related to the mass of sorbent in the SPE tube and more specifically the "bed volume" of the SPE device. Typically 4 - 16 bed volumes are used in SPE methods.

Strata Sorbent Mass	10 mg	30 mg	60 mg	100 mg	150 mg	200 mg	500 mg	1 g	2 g	5 g	10 g
Practical Minimum Wash and Elution Volume 4 bed volumes	100µL	300µL	600µL	1 mL	1.5 mL	2mL	5 mL	10 mL	20 mL	50mL	100 mL
Recommended Wash and Elution Volume 8 bed volumes	200µL	600µL	1.2 mL	2 mL	3mL	4mL	10 mL	20mL	40 mL	100 mL	200 m L

*The elution volumes are specific to the chemical nature of the analyte being extracted, its concentration in the sample, the chemical nature of the eluting solvent and the bed mass used. The above is a guideline. An elution study should be conducted to determine the appropriate volume to use.

Strata[®]-X Polymeric SPE

Strata-X

Continue to Page 7

Strata[®] Silica-Based SPE

Sorbent Properties

6

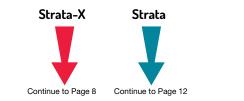
Table 1b. SPE Overview	Strata	Strata-X
Increase Detection Sensitivity by removing matrix contaminants	•	•
Increase Column Lifetime by removing matrix contaminants	•	•
Quality Guaranteed by more than 20 QA and QC measures	•	•
Increase Reproducibility with robust methods	•	•
Save Time by processing multiple samples simultaneously or automating method	•	•
Specific Selectivity for your target analytes	•	•
Decreased Solvent Consumption with the highest loadability		•
Decreased Blow-down Time with smaller elution volumes		•
Decreased Sample Variation with deconditioning resistant sorbent		•
pH Stable from 1-14		•

Table 2b. Silica-Based Sorbents Loading Capacities

Sample Matrix	Sorbent Mass
Blood, serum, plasma	50 mg sorbent per 250 µL
Urine	50 mg sorbent per 500 µL
Filtered tissue homogenates	100 mg sorbent per 100 mg tissue
Environmental Samples	Sorbent Mass
Environmental Samples Water (particulate-free) drinking	Sorbent Mass 500 mg/100 mL - 500 mL sample
•	

Table 3b. Sorbent Wash and Elution Volumes*

The volume of solvent needed for the wash and elution steps is directly related to the mass of sorbent in the SPE tube and more specifically the "bed volume" of the SPE device. Typically 4 – 16 bed volumes are used in SPE methods.


Sorbent Mass	10 mg	50 mg	100 mg	150 mg	200 mg	500 mg	1 g	2 g	5 g	10 g
Practical Minimum Wash and Elution Volume 4 bed volumes	60 µL	300µL	600µL	900 µL	1.2 mL	3 mL	6mL	12 mL	30mL	60mL
Recommended Wash and Elution Volume 8 bed volumes	120 µL	600 µL	1.2 mL	1.8mL	2.4 mL	6mL	12 mL	24 mL	60 mL	120 mL

*The elution volumes are specific to the chemical nature of the analyte being extracted, its concentration in the sample, the chemical nature of the eluting solvent and the bed mass used. The above is a guideline. An elution study should be conducted to determine the appropriate volume to use.

Reproducible, high efficiency solid phase extraction requires that the sample be made liquid prior to loading onto a SPE device. The SPE sample should meet the following conditions:

- Liquid of low viscosity (to pass through the cartridge)
- Low solids or particulate contaminants (to prevent clogging)
- Solvent composition that is suitable for retention (each mechanism has different matrix solvent composition requirements for proper retention)

cal Samples (liquid)	
Urine, Whole blood, Serum, Plasma, Bile, etc.	Dilute sample 1:2 with appropriate proteinaceous (ZnSO ₄ , ACN), hyd protein binding (sonication, enzyn
cal Samples (solid)	
Organ tissues, Feces, GI contents	Homogenize with organic or aque solubility. Settle, decant, centrifug Matrix Solid Phase Dispersion (M
Matrix	
Water (waste, river, etc.)	Buffer to appropriate pH and filter
Soil, Sludge	Homogenize with organic or aque solubility. Settle, decant and filter
Ointments, Creams	Oil-based Dissolve in non-polar organic (hex Water-based Dissolve in water or water miscibl non-polar SPE.
Fruit, Vegetable, Herbs	Homogenize with organic or aque solubility and filter supernatant. U the dissolution solvent (hexane = polar mechanism; methanol/ACN dilution).
	Serum, Plasma, Bile, etc. cal Samples (solid) Organ tissues, Feces, GI contents Matrix Water (waste, river, etc.) Soil, Sludge Ointments, Creams Fruit, Vegetable,

Sample Pre-treatment

te buffer, precipitate proteins if drolyze urinary glucuronides, disruption of matic, acids/bases).

eous solvent depending upon analyte uge or filter supernatant. Perform direct /SPD) extraction on tissue.

er particulates from sample.

eous solvent depending upon analyte er supernatant; perform Soxhlet extraction.

exane) and extract via polar SPE.

ble organic (methanol) and extract via

eous solvent depending upon analyte Use appropriate SPE mechanism for polar mechanism; aqueous = non-= either non-polar or polar after proper

Sample Preparation Support at Your Fingertips

Dedicated sample preparation team available to assist your method development needs

Support@Phenomenex.com

Strata-X Polymeric SPE Phase Overview

Step 3a

- Clean extracts from biological sample matrices
- Streamlined method development and simple processing

Strata-X Phase	Functional Group	Mode	Analyte	Recommended Alternative to Waters®
Strata-X		Reversed Phase	Polar and Non-Polar	Oasis [®] HLB
Strata-X-C	$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} -0^{-i}$	Reversed Phase and Strong Cation-Exchange	Bases	Oasis MCX
Strata-X-CW	, ↓ , , , , , , , , , , , , , , , , , ,	Reversed Phase and Weak Cation-Exchange	Bases (including Quaternary Amines)	Oasis WCX
Strata-X-A	CH ₃ CH ₃	Reversed Phase and Strong Anion-Exchange	Acids	Oasis MAX
Strata-X-AW		Reversed Phase and Weak Anion-Exchange	Acids (including Sulfonic acids)	Oasis WAX
Strata-XL		Large Particle Reversed Phase	Polar and Non-Polar	Oasis HLB
Strata-XL-C	$\sum_{i=1}^{n} (i) = \sum_{i=1}^{n} (i) = 0$	Large Particle Reversed Phase and Strong Cation-Exchange	Bases	Oasis MCX
Strata-XL-CW	Ź ⁿ −O~√°₀ _y	Large Particle Reversed Phase and Weak Cation- Exchange	Bases (including Quaternary Amines)	Oasis WCX
Strata-XL-A	CH ₃ CH ₃	Large Particle Reversed Phase and Strong Anion-Exchange	Acids	Oasis MAX
Strata-XL-AW	$\sum_{n=1}^{n} O_{nH} \sim NH_{2}$	Large Particle Reversed Phase and Weak Anion- Exchange	Acids (including Sulfonic acids)	Oasis WAX

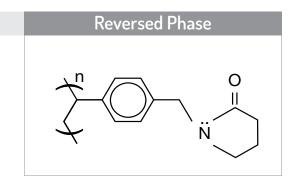
Strata-X / Strata-XL Reversed Phase

9

st	Condition 1 mL Methanol
strata	
<u>م</u>	Equilibrate
	1 mL Water
	Load
	Diluted Sample
	Wash
	1 mL 5-60 % Methanol
U	

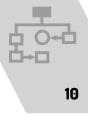
SPE Method Development Tool

Develop SPE methods for sample cleanup and concentration in under one minute. www.phenomenex.com/mdtool

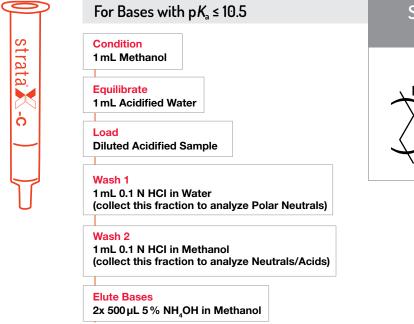


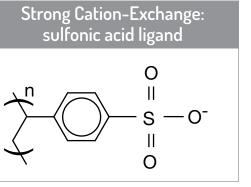
Search Hundreds of Applications

Know the name of your analyte? Immediately find key Sample Prep applications for small molecules and biomolecules by entering the name or the chemical properties of the analyte. www.phenomenex.com/applications


General Starting Methods: Strata[®]-X (contid)

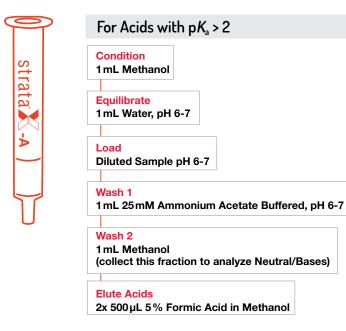
*Based on 30 mg/1 mL sorbent mass. The above is a convenient starting point for SPE method development. Further optimization may be required to tailor the method to your specific needs.

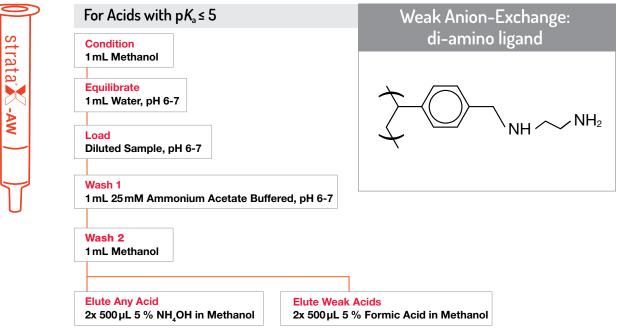



Step 3a General Starting Methods: Strata®-X (cont'd)

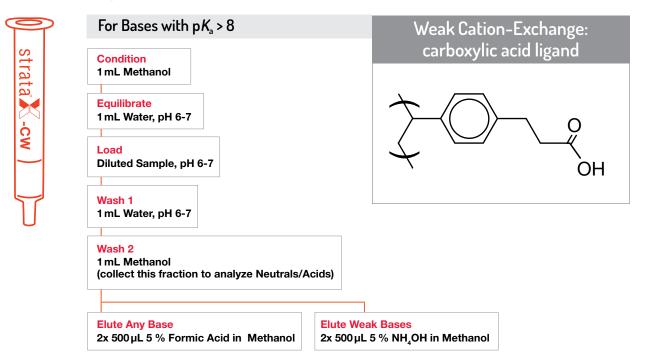
11

Strata-X-C / Strata-XL-C


Strong Cation-Exchange & Reversed Phase

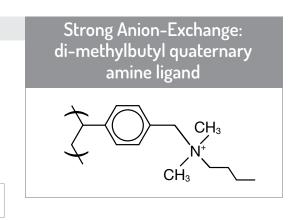

Strata-X-A / Strata-XL-A

Strong Anion-Exchange & Reversed Phase


Strata-X-AW / Strata-XL-AW

Weak Anion-Exchange & Reversed Phase

Strata-X-CW / Strata-XL-CW


Weak Cation-Exchange & Reversed Phase

*Based on 30 mg/1 mL sorbent mass. The above is a convenient starting point for SPE method development. Further optimization may be required to tailor the method to your specific needs.

Step 3a General Starting Methods: Strata®-X (cont'd)

Neak	Acids	
μL 5	% Formic Acid in Methanol	

^{*}Based on 30 mg/1 mL sorbent mass. The above is a convenient starting point for SPE method development. Further optimization may be required to tailor the method to your specific needs

Strata Silica-Based SPE Phase Overview

Step 3b

Reversed Phas	eversed Phase Sorbents Recommended Alternative to:							
Strata Phase	Phase Benefits	Sorbent Chemistry	Recommended Method (See pp. 16-17)	Waters [®] Sep-Pak [®]	Agilent [®] SampliQ [®] Bond Elut [®]	Biotage [®] IST [®] ISOLUTE [®]	UCT [®] CleanScreen [®] StyreScreen [®]	Supelco [®] Discovery [®]
С18-Е	Extraction of hydrophobic molecules	j.k	METHOD 1	tC18	SampliQ C18EC Bond Elut C18	C18 (EC)	C18	DSC-18
C18-U	Enhanced cleanup of hydrophobic compounds that contain hydroxy or amine functional groups		METHOD 1		Bond Elut C18-OH	C18		
C18-T	Wide pore for the extraction of large hydrophobic molecules (up to 75 kDa)		METHOD 1	C18	Bond Elut C18-EWP			DSC-18Lt
C8	Extraction of extremely hydrophobic compounds that are retained too tightly on C18-E		METHOD 1	C8	SampliQ C8 Octyl Bond Elut C8	C8(EC)	C8	DSC-8
Phenyl (PH)	Extraction of aromatic compounds		METHOD 1		SampliQ Phenyl Bond Elut PH	РН	Phenyl	DSC-Ph
CN	Extraction of polar compounds	C III	METHOD 1	CN	SampliQ Cyano (CN) Bond Elut Cyano (CN-E)	CN	CN	DSC-CN
SDB-L	Extraction of non-polar and polar compounds; pH resistant sorbent	\sim	METHOD 1		SampliQ DVB Bond Elut ENV Bond Elut LMS	101	StyreScreen® DVB	DSC-PS/DVB
Normal Phase	Sorbents	``						
Si-1 (Silica)	Extraction of polar compounds that are similar in structure	-он -он -он -он	METHOD 6	Silica	SampliQ Silica Bond Elut SI	SI	Silica	DSC-Si
FL-PR (Florisil®)	Extraction of pesticides	Florisil	METHOD 6	Florisil [®]	SampliQ Florisil [®] PR Bond Elut Florisil [®]	FL	Florisil [®] PR	ENVI-Florisil [®]
NH ₂	Extraction of strong anions	ine ine ine	METHOD 6	NH ₂	SampliQ Amino (NH ₂) Bond Elut Aminopropyl (NH ₂)	NH ₂	Amino Propyl	DSC-NH ₂
CN	Extraction of polar compounds	-CH	METHOD 6	CN	SampliQ Cyano (CN) Bond Elut Cyano (CN-E)	CN	CN	DSC-CN

General Starting Methods: Strata[®] (cont'd)

Strata Silica-Based Phase Overview

Ion-Exchange S	on-Exchange Sorbents Recommended Alternative to:							
Strata Phase	Phase Benefits	Sorbent Chemistry	Recommended Method (See pp. 16-17)	Waters [®] Sep-Pak [®]	Agilent [®] SampliQ [®] Bond Elut [®]	Biotage [®] IST [®] ISOLUTE [®]	UCT [®] CleanScreen [®] StyreScreen [®]	Supelco [®] Discovery [®]
ABW	Fractionation of neutral compounds such as amides from acidic and basic analytes	inter a state of the state of t	Inquire					
SAX	Extraction of weak anions		METHOD 5	Accell Plus QMA	SampliQ Si-SAX Bond Elut SAX	SAX	Quaternary Amine	DSC-SAX
SCX	Extraction of 1°, 2°, and 3° amines		METHOD 3		SampliQ Si-SCX Bond Elut SCX	SCX-3	Benzene Sulfonic Acid	DSC-SCX
wcx	Extraction of quaternary amines	он он	METHOD 3	Accell Plus CM	Bond Elut CBA	СВА	Carboxylic Acid	DSC-WCX
Screen-C	Mixed-mode cation-exchange that also provides hydrophobic retention	2	METHOD 3		SampliQ C8/Si-SCX Mixed Mode Bond Elut Certify®	НСХ	Clean Screen® DAU	
Screen-C GF	Large particle size, mixed-mode cation-exchange that also provides hydrophobic retention		METHOD 3		Bond Elut Certify® I HF		Xtract [®] DAU	
Screen-A	Mixed-mode anion-exchange that also provides hydrophobic retention	a	METHOD 5		Bond Elut Certify® II	НАХ	Clean Screen THC	
NH ₂	Extraction of strong anions	ing ing	METHOD 4	NH ₂	SampliQ Amino (NH ₂) Bond Elut Aminopropyl (NH ₂)	NH ₂	Amino Propyl	DSC-NH ₂
Special Sorbents								
Alumina-N (AL-N)	Extraction of polar compounds from food and environmental samples	Proprietary	METHOD 6	Alumina-N				
EPH (Extractable Petroleum Hydrocarbons)	Fractionation of aliphatic and aromatic hydrocarbons from environmental samples	-оч -оч -оч	METHOD 6					

General Starting Methods: Strata[®] (cont'd)

Step 3b

General Starting Methods: Strata[®] (cont'd)

Step 3b Ger

17

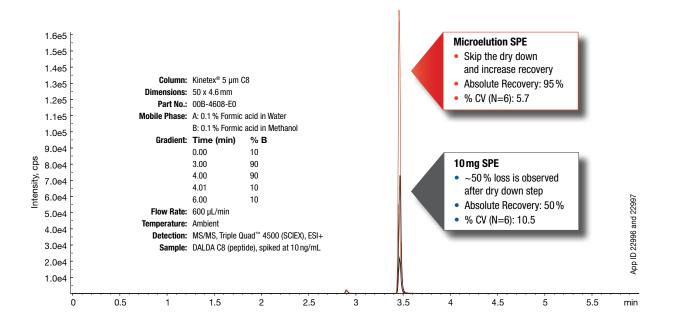
Strata	Reversed Phase METHOD
	Condition 1 mL Methanol
S t	Equilibrate 1 mL DI Water
rata	Load Pretreated sample
_	Wash 1 mL 5 % Methanol in DI Water, dry under vacuum for 2-5 min
	Elute 1 mL Methanol
Strata WCX	Weak Cation - Exchange
	Condition 1 mL Methanol
	Equilibrate 1 mL DI Water, pH 6-7
trata	Load Pretreated sample, pH 6-7
_	Wash 1 1 mL Water, pH 6-7
	Wash 2 1 mL Methanol, dry under vacuum for 2-5 min
	Elute Any BaseElute Weak Bases1 mL 5 % Formic Acid in Methanol1 mL 5 % NH4OH in Methanol
Strata SCX	Strong Cation - Exchange
	Condition 1 mL Methanol
S t	Equilibrate 1 mL Acidified Water
rata	Load Pretreated sample (acidified)
	Wash 1 1 mL 0.1N HCl in Water
ſ	Wash 2 1 mL 0.1N HCI in Methanol, dry under vacuum for 2-5 min
	Elute 1 mL 5 % NH₄OH in Methanol

Strata $\mathrm{NH}_{_2}$	(WAX) Weak Anion - Exchange
) (Strata)	Condition 1 mL Methanol Equilibrate 1 mL Water, pH 6-7 Load Pretreated sample, pH 6-7 Wash 1 1 mL 25 mM Ammonium Acetate Buffer, pH 6-7 Wash 2 1 mL Methanol, dry under vacuum for 2-5 min
	Elute Any AcidElut1 mL 5 % NH4OH in Methanol1 ml
Strata SAX	Strong Anion - Exchange
∬ ⊜strata°	Condition 1 mL Methanol Equilibrate 1 mL Water Load Pretreated sample, pH 6-7 Wash 1 1 mL 25mM Ammonium Acetate Buffer, pH 6-7 Wash 2 1 mL Methanol, dry under vacuum for 2-5 min Elute 1 mL 5% Formic Acid in Methanol
Strata	Strata Normal Phase Method
) (Strata)	Condition IPA / DCM Equilibrate Hexane Load Pretreated sample Wash 5 % DCM in Hexane
U	Elute 1:1 Hexane / DCM or 1:1 Hexane / IPA

*100 mg sorbent mass

General Starting Methods: Strata[®] (cont'd)

Industry Applications Pharmaceutical: Preventing Analyte Loss


Preventing Analyte Loss by Skipping the Dry Down Step using Microelution SPE

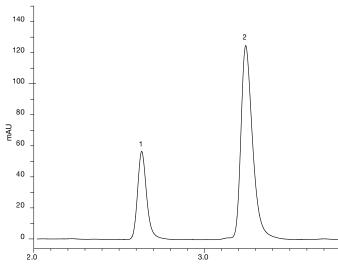
Many target analytes, such as peptides and thermolabile compounds, can be lost during dry down steps. Stop risking analyte loss and skip the dry down, without losing sensitivity using Strata[®]-X microelution plates. A new format that provides increased sensitivity for analytes of interest.

SPE Protocol

	Strata-X 96-Well Plate, 10mg/well	Strata-X Microelution 96-Well Plate, 2 mg/well
Part No.	8E-S100-AGB	8M-S100-4GA
Condition	400 µL Methanol	200µL Methanol
Equilibrate	400 µL Water	200µL Water
Load	$400\mu L$ diluted serum (200 μL serum diluted 1:1 with 4 % Phosphoric acid in water)	$400\mu L$ diluted serum (200 μL serum diluted 1:1 with 4 % Phosphoric acid in water)
Wash 1	400 µL 2 % Formic acid in water	200µL 2 % Formic acid in water
Wash 2	400 µL 20 % Acetonitrile in water	200µL 20% Acetonitrile in water
Elute	2x 175 µL Trifluoroacetic acid/acetonitrile/water (1:74:25)	2x 25 µL Trifluoroacetic acid/acetonitrile/water (1:74:25)
Dry Down	Dry down under a gentle stream of Nitrogen and reconstitute in 50 µL Trifluoroacetic acid/ acetonitrile/water (1:74:25)	NOT REQUIRED
Inject	10µL	10µL

DALDA C8 (peptide) Extracted from Serum

19


Improved Clean Up and Recovery of Pharmaceutical Compounds From Plasma: SPE vs. Liquid-Liquid Extraction

Although liquid-liquid extraction (LLE) has been frequently used in the past, newer techniques with improved specificity towards particular analytes have allowed analysts to improve recovery and reproducibility of their samples. It was found that SPE provides cleaner extracts, higher recoveries, and better reproducibility which can greatly improve results when working with pharmaceutical compounds from plasma.

SPE Protocol

	Strata-X 30 mg/1 mL	
Part No.	8B-S100-TAK	
Condition	1 mL Methanol	
Equilibrate	2 mL Water	
Load	1.6mL Pre-treated plasma	
Wash	1 mL 5 % Methanol	
Dry	1 minute under vacuum at 10 inches Hg	
Elute	1 mL Methanol	
Dry down	Dry down @ 53 °C under a stream of nitrogen for 20	
Reconstitute	Reconstitute in 500 µL of mobile phase	

Chromatogram after SPE Extraction from a Plasma Matrix

Industry Applications Pharmaceutical: Compounds from Plasma

% Absolute Recovery for Diclofenac

	Spiked Concentration	Diclofenac	Mean % RSD
SPE	15µg/mL	86 % (n=4)	10
LLE	15µg/mL	46 % (n=4)	35

Diclofenac spiked plasma sample (50 µg/mL) after extraction with Strata®-X. Flurbiprofen (IS) was added post-extraction at a concentration of 160 µg/mL. Note: the flurbiprofen was added post blow down, which is also post-extraction.

₽ 4.0 5.0 min

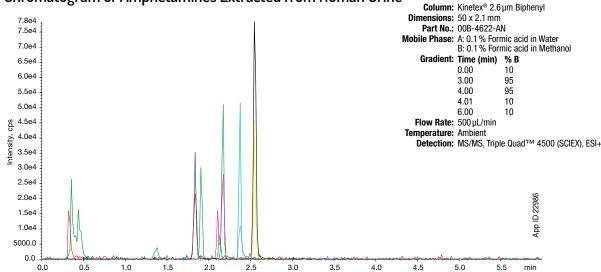
To learn more about this method and others, visit: www.phenomenex.com/SPE

Industry Applications Clinical Research: Amphetamines

20

Amphetamines from Urine Using Microelution SPE

An extraction method to isolate five amphetamines from urine using Strata®-X-C Microelution 96-well SPE plates followed by LC/MS/MS analysis. By utilizing the microelution SPE format, the dry down step was skipped saving at least 30 minutes without negatively impacting the sensitivity of our analysis. The five amphetamines were accurately quantified at detection levels down to 25% below the cutoff levels specified by the Substance Abuse and Mental Health Services Administration (SAMHSA).

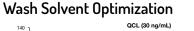

SPE Protocol

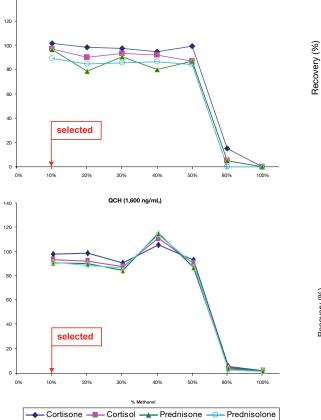
	Strata-X-C Microelution 96-Well Plate, 2mg/well
Part No.	8M-S029-4GA
Condition	200 µL Methanol
Equilibrate	200 µL Water
Load	$400 \mu L$ diluted urine (200 μL urine diluted 1:1 with water)
Wash 1	200 µL 2 % Formic acid in water
Wash 2	200 µL Methanol
Elute	$2x 25 \mu L 5 \%$ Ammonium hydroxide in acetonitrile/methanol (60:40)
Injection	2 µL

Amphetamines Extracted from Human Urine

Amphetamines	Concentration (ng/mL) (25 % below SAMHSA cut off)	RT (min)	% Absolute Recovery	% CV (N=8)
Amphetamine	125	1.83	82	13.1
Methamphetamine	125	2.12	107	15.1
MDA	62.25	2.15	106	4.2
MDMA	62.25	2.36	99	15.7
MDEA	62.25	2.53	108	10.5

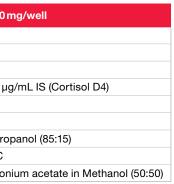
Chromatogram of Amphetamines Extracted from Human Urine

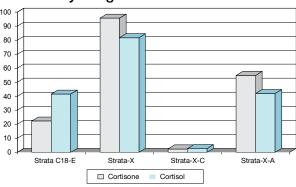

Urinary Steriods using Strata®-X SPE


We evaluated a variety of silica-based and polymer-based SPE sorbents for the quantification of cortisol, cortisone, prednisolone, and prednisone, each of which provides a different retention mechanism. The evaluation showed that the Strata-X polymer-based SPE sorbent, with a unique elution solvent has been found to be a robust, reproducible, and cost effective sample preparation solution for the laboratory in human urine for all four corticosteroids.

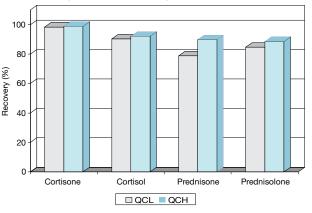
SPE Protocol

21


	Strata-X 96-Well Plate, 60
Part No.	8E-S100-UGB
Condition	1 mL Methanol
Equilibrate	1 mL Water
Load	300 μL human urine diluted in 300 μL Water with 1 μ
Wash 1	1 mL Water
Wash 2	1 mL 10 % Methanol in Water
Elute	2x 500 µL of 2 % Formic Acid in Ethyl acetate/Isopro
Dry Down	To dryness under a gentle Nitrogen stream at 50 °C
Reconstitute	100 µL of 10 mM Ammonium acetate/10 mM Ammo



Phenomenex | WEB: www.phenomenex.com


Industry Applications Clinical Research: Steriods

Recovery using SPE Sorbents

Recovery using Strata-X Across Low (QCL, 30 ng/mL) and High (QCH, 1600 ng/mL) QC Concentrations

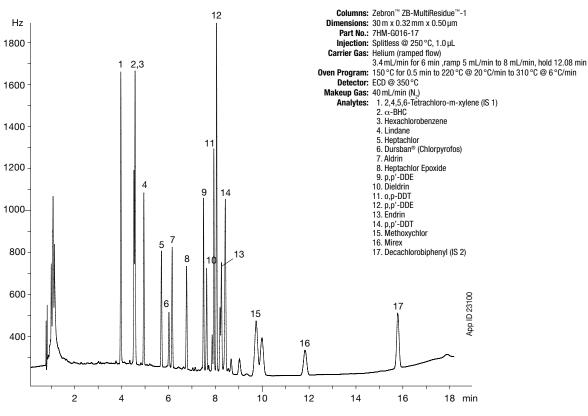
Phenomenex | WEB: www.phenomenex.com

Industry Applications **Food: Chlorinated Pesticides**

Chlorinated Pesticides in Poultry Tissue Using Strata® Alumina-N SPE

Animals used for food consumption are exposed to contaminants at levels that can pose harm to the human population. Presented is a method developed using Strata Alumina-N SPE and GC/ECD for pesticides analysis from poultry fat. This method improves upon the traditional procedure by reducing time and increasing accuracy and reliability.

Pretreatment Protocol


1.	Using 1 minute intervals with a microwave, render poultry fat pads ensuring the sample does not exceed 100 $^\circ\mathrm{C}$

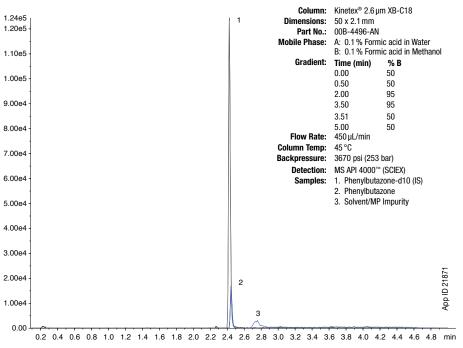
- Weigh 1 gram of rendered fat into a 10 mL volumetric flask and bring to volume with hexane 2. containing internal standards 1 and 2
- 3. Vortex or shake volumetric flasks to ensure proper mixing

SPE Protocol

	Strata Alumina-N, 2 g/12 mL
Part No.	8B-S313-KDG
Condition Methanol/Water (86:14) at 10 mL/min until dry	
Equilibrate	Petroleum ether at full cartridge volume at 10mL/min
Load	1 mL Pretreated sample
Elute	Ethyl Ether/Petroleum Ether (1.5:98.5) at full cartridge volume and collect eluent
Dry Down	Dry down at ambient temperatures under a stream of nitrogen and evaporate to dryness
Reconstitute	2 mL Hexane

GC / EDC Analysis of Chlorinated Hydrocarbons

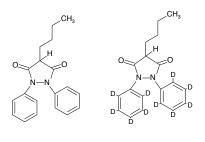
Phenylbutazone in Ground Meat using Strata®-X-A SPE


A simple yet effective SPE and cleanup method for phenylbutazone from meat with recovery values > 90 %. Highly specific LC/MS/MS data is generated using a Kinetex core-shell column enabling rapid run times under 5 minutes with excellent precision and accuracy.

SPE Protocol

23

	Strata-X-A, 100mg/6mL
Part No.	8B-S123-ECH
Condition	3 mL Methanol
Equilibrate	3 mL DI Water
Load	4 mL of Pretreated sample
Wash 1	2 mL D.I. Water
Wash 2	2 mL Acetonitrile
Wash 3	2 mL Ethyl Acetate
Dry	5 minutes under full vacuum
Elute	2x 1.5mL 1 % Formic Acid in Methanol
Dry Down	Evaporate under a stream of nitrogen gas at 50 °C to
Reconstitute	Resuspend the residue with 500 μL of Methanol/ 0.1


Chromatogram of 10 ppb Phenylbutazone

Industry Applications Food: Phenylbutazone

drupaga
dryness
•
% Formic Acid (50:50)

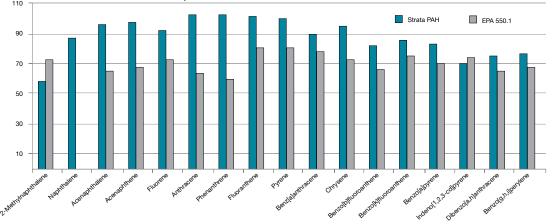
Phenylbutazone and Phenylbutazone-D10 **Chemical Structures**

% Recovery of Phenylbutazone from Beef Extract at 5 ppb and 75 ppb (µg/kg) n=4

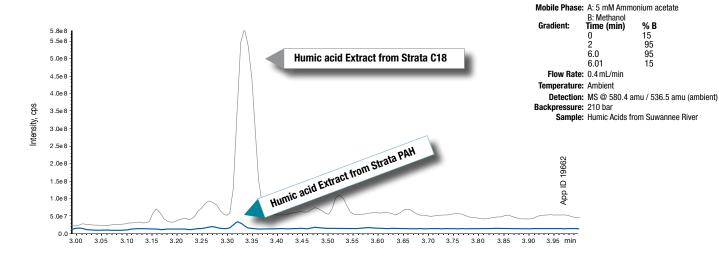
Spiked Conc.	%CV	Accuracy
5	8.02	100.7
75	5.0	90.3

Kinetex® 2.6µ 50 x 2.1 mm	ım XB-C18
00B-4496-AN	l
	nic acid in Water
B: 0.1 % Forn	nic acid in Methano
Time (min)	% B
0.00	50
0.50	50
2.00	95
3.50	95
3.51	50
5.00	50
450 µL/min	
45 °C	
3670 psi (253	bar)
MS API 4000"	" (SCIEX)
1. Phenvlbuta	azone-d10 (IS)
2. Phenylbuta	()
3. Solvent/MI	

Industry Applications Environmental: Polycyclic Aromatic Hydrocarbons


Polycyclic Aromatic Hydrocarbons using Strata® PAH as Compared to EPA Method 550.1

Polycyclic aromatic hydrocarbon compounds (PAHs) are effectively extracted from water samples while humic acids, which often interfere with chromatographic separation, are removed from the sample using a SPE sorbent, Strata PAH. It was also found that Strata PAH provides consistent, high recoveries of all 16 analytes listed under EPA Method 550.1.


SPE Protocol

	Strata PAH, 1.5 g/6mL
Part No.	8B-S130-7CH
Condition	20 mL Dichloromethane, 20 mL Methanol, 20 mL D.I. Water
Load	100 µL PAH standards (100 µg/mL in Acetonitrile) spiked into 100 mL Water/Acetonitrile (75:25)
Wash	5 mL Methanol/D.I. Water (50:50)
Dry	15 seconds under 10" Hg Vacuum
Elute	6 mL Dichloromethane

PAH % Recoveries from Tap Water

Effective Removal of Humic Acids

Strata [®] -X P	Strata [®] -X Polymeric SPE Sorbents							
Tubes	1 mL (1	00/box)	3 mL (50/box)			6 mL (30/box)		
Phase	30 mg	60 mg	60 mg	200 mg	500 mg	100 mg	200 mg	500 mg
Strata-X	8B-S100-TAK	8B-S100-UAK	8B-S100-UBJ	8B-S100-FBJ	8B-S100-HBJ	8B-S100-ECH	8B-S100-FCH	8B-S100-HCH
Strata-X-C	8B-S029-TAK	—	8B-S029-UBJ	8B-S029-FBJ	8B-S029-HBJ	8B-S029-ECH	8B-S029-FCH	8B-S029-HCH
Strata-X-CW	8B-S035-TAK	—	8B-S035-UBJ	8B-S035-FBJ	8B-S035-HBJ	8B-S035-ECH	8B-S035-FCH	8B-S035-HCH
Strata-X-A	8B-S123-TAK	—	8B-S123-UBJ	8B-S123-FBJ	8B-S123-HBJ	8B-S123-ECH	8B-S123-FCH	8B-S123-HCH
Strata-X-AW	8B-S038-TAK	—	8B-S038-UBJ	8B-S038-FBJ	8B-S038-HBJ	8B-S038-ECH	8B-S038-FCH	8B-S038-HCH
Strata-XL	8B-S043-TAK	—	8B-S043-UBJ	8B-S043-FBJ	8B-S043-HBJ	8B-S043-ECH	8B-S043-FCH	8B-S043-HCH
Strata-XL-C	8B-S044-TAK	_	8B-S044-UBJ	8B-S044-FBJ	8B-S044-HBJ	8B-S044-ECH	8B-S044-FCH	8B-S044-HCH
Strata-XL-CW	8B-S052-TAK	—	8B-S052-UBJ	8B-S052-FBJ	8B-S052-HBJ	8B-S052-ECH	8B-S052-FCH	8B-S052-HCH
Strata-XL-A	8B-S053-TAK	_	8B-S053-UBJ	8B-S053-FBJ	8B-S053-HBJ	8B-S053-ECH	8B-S053-FCH	8B-S053-HCH
Strata-XL-AW	8B-S051-TAK	_	8B-S051-UBJ	8B-S051-FBJ	8B-S051-HBJ	8B-S051-ECH	8B-S051-FCH	8B-S051-HCH

Strata[®] Silica-Based SPE Sorbents

Tubes	1 mL (1	00/box)		3 mL (50/box)		6 mL (30/box)		
Phase	50 mg	100 mg	100 mg	200 mg	500 mg	200 mg	500 mg	1 g
C18-E	8B-S001-DAK	8B-S001-EAK	8B-S001-EBJ	8B-S001-FBJ	8B-S001-HBJ	8B-S001-FCH	8B-S001-HCH	8B-S001-JCH
C18-U	—	8B-S002-EAK	—	8B-S002-FBJ	8B-S002-HBJ	—	8B-S002-HCH	8B-S002-JCH
C18-T	_	8B-S004-EAK	_	8B-S004-FBJ	8B-S004-HBJ	—	8B-S004-HCH	8B-S004-JCH
C8	—	8B-S005-EAK	—	8B-S005-FBJ	8B-S005-HBJ	—	8B-S005-HCH	8B-S005-JCH
Phenyl	—	8B-S006-EAK	—	8B-S006-FBJ	8B-S006-HBJ	—	8B-S006-HCH	8B-S006-JCH
SCX	_	8B-S010-EAK	8B-S010-EBJ	8B-S010-FBJ	8B-S010-HBJ	—	8B-S010-HCH	8B-S010-JCH
WCX	—	8B-S027-EAK	—	8B-S027-FBJ	8B-S027-HBJ	—	8B-S027-HCH	8B-S027-JCH
SAX	—	8B-S008-EAK	8B-S008-EBJ	8B-S008-FBJ	8B-S008-HBJ	—	8B-S008-HCH	8B-S008-JCH
NH2	_	8B-S009-EAK	—	8B-S009-FBJ	8B-S009-HBJ	—	8B-S009-HCH	8B-S009-JCH
CN	—	8B-S007-EAK	_	8B-S007-FBJ	8B-S007-HBJ	—	8B-S007-HCH	8B-S007-JCH
Si-1	—	8B-S012-EAK	—	8B-S012-FBJ	8B-S012-HBJ	—	8B-S012-HCH	8B-S012-JCH
Florisil®	_	—	—	_	8B-S013-HBJ	—	8B-S013-HCH	8B-S013-JCH
EPH	—	—	—	—	8B-S031-HBJ	—	—	—
AL-N	_	_	_	_	8B-S313-HBJ	_	_	8B-S313-JCH

Strata Mixed-Mode Sorbents (for drugs of abuse)

Tubes	1 mL (100/box)		3 mL (50/box)			6 mL (30/box)		
Phase	_	100 mg	100 mg	150 mg	200 mg	200 mg	500 mg	—
Screen-C	_	8B-S016-EAK	8B-S016-EBJ	8B-S016-SBJ	8B-S016-FBJ	8B-S016-FCH	8B-S016-HCH	—
Screen-A	_	8B-S019-EAK	_	_	8B-S019-FBJ	8B-S019-FCH	8B-S019-HCH	—

Strata Poly	meric Sorbe	ents		
Tubes	1 mL (1	00/box)		3mL (50/box)
Phase	50 mg	100 mg	—	200 mg

Phase	50 mg	100 mg	—	200 mg
SDB-L	8B-S014-DAK	8B-S014-EAK		8B-S014-FBJ

Accessories For Tubes

Adapter Ca)S	
Part No.	Description	Unit
AH0-7191	Adapter Caps for 1, 3, and 6 mL SPE tubes, polyethylene, with Luer tip	15/pk

SPE Tube Vacuum Manifolds

Part No.	Description	Unit
24 - Position	Vacuum Manifold* ³	
AH0-6024	SPE 24-Position Vacuum Manifold Set, complete assembly	ea
12 - Position	Vacuum Manifold*2	
AH0-6023	SPE 12-Position Vacuum Manifold Set, complete assembly	ea
10 - Position	Tall-Boy™ Vacuum Manifold*1	
AH0-7502	SPE 10-Position Tall-Boy Vacuum Manifold, complete assembly	ea

Column: Kinetex® 2.6 µm C8

nensions: 50 x 2.1 mm Part No.: 00B-4497-AN

Tube Ordering Information

strata

		6 mL (30/box)	
500 mg	200 mg	500 mg	1 g
8B-S014-HBJ	8B-S014-FCH	8B-S014-HCH	8B-S014-JCH

*Manifolds include: Vacuum-tight glass chamber, vacuum gauge assembly, polypropylene lid with gasket, male and female luers and yellow end plugs, stopcock valves, collection rack assemblies, polypropylene needles, lid support legs. Waste container included with 12-position manifold.

(1) The 10-position Tall Boy Vacuum Manifold Collection Rack includes 4 plates: one base plate, one dimple plate, one small plate and one large plate and three riser bar legs, along with 12

manifold clips to support the plates. The assembly also includes 10 polypropylene needles, 10 stopcocks and 4 black legs to support the lid when taken off the glass block.

(2) The 12-position Collection Rack Assembly consists of 3 support legs, base plate, dimple plate, small plate, medium plate, large plate, volumetric plate, and 12 retaining clips.

(3) The 24-position Collection Rack Assembly consists of 3 support legs, base plate, dimple plate, small plate, large plate, and 12 retaining clips.

96-Well Plate Ordering Information

strata

Strata®-X Polymeric SPE Sorbents

96-Well Plates (2/Box)			
10 mg	30 mg	60 mg	
8E-S038-AGB	8E-S038-TGB	8E-S038-UGB	
8E-S123-AGB	8E-S123-TGB	8E-S123-UGB	
8E-S100-AGB	8E-S100-TGB	8E-S100-UGB	
8E-S029-AGB	8E-S029-TGB	8E-S029-UGB	
8E-S035-AGB	8E-S035-TGB	8E-S035-UGB	
-	8E-S051-TGB	-	
-	8E-S053-TGB	-	
-	8E-S043-TGB	-	
-	8E-S044-TGB	-	
-	8E-S052-TGB	-	
	10mg 8E-S038-AGB 8E-S123-AGB 8E-S100-AGB 8E-S029-AGB	10mg 30mg 8E-S038-AGB 8E-S038-TGB 8E-S123-AGB 8E-S123-TGB 8E-S123-AGB 8E-S100-TGB 8E-S100-AGB 8E-S029-TGB 8E-S029-AGB 8E-S029-TGB 8E-S035-AGB 8E-S035-TGB - 8E-S051-TGB - 8E-S053-TGB - 8E-S053-TGB - 8E-S043-TGB - 8E-S043-TGB	

Strata-X Microelution Plates

96-Well Plates (ea)		
Phase	2 mg	
Strata-AW	8M-S038-4GA	
Strata-A	8M-S123-4GA	
Strata-X	8M-S100-4GA	
Strata-X-C	8M-S029-4GA	
Strata-X-CW	8M-S035-4GA	

solid Phase Extraction

Strata Silica-Based SPE Sorbents

96-Well Plates (2/Box)				
Phase	25 mg	50 mg	100 mg	
C18-E	8E-S001-CGB	8E-S001-DGB	8E-S001-EGB	
C18-U	_	8E-S002-DGB	8E-S002-EGB	
C18-T	8E-S004-CGB	8E-S004-DGB	_	
C8	8E-S005-CGB	_	_	
Phenyl	8E-S006-CGB	_	8E-S006-EGB	
Silica	_	8E-S012-DGB	8E-S012-EGB	
NH ₂	8E-S009-CGB	8E-S009-DGB	8E-S009-EGB	
SAX	8E-S008-CGB	8E-S008-DGB	8E-S008-EGB	
SCX	8E-S010-CGB	8E-S010-DGB	8E-S010-EGB	
WCX	8E-S027-CGB	8E-S027-DGB	—	
Screen-C	—	8E-S016-DGB	8E-S016-EGB	
SDB-L	_	8E-S014-DGB	_	

96-Well Plate Vacuum Manifold

Presston 100 Tube Adapter Kits

1 mL Tube Adapter Kit

3 mL Tube Adapter Kit

6 mL Tube Adapter Kit

Tube Adapter Kits (for AH0-9334)

AH0-9344

AH0-9345

AH0-9346

Part No. Description AH0-8950 96-Well Plate Manifold, Universal w/vacuum gauge ea **Manifold, compatible with 2 mL Impact plate, Strata and Strata-X 96-well plate formats.

If Strata-X or Strata SPE products do not perform as well or better than your current SPE product of similar phase, mass and size, return the product with comparative data within 45 days for a FULL REFUND.

presston loo

Presston 100 Manifold

96-Well Positive Pressure Manifold		
Part No. Description		
AH0-9334	Presston 100 Positive Pressure Manifold, 96-Well Plate	
AH0-9342	Presston 100 Positive Pressure Manifold, 1 mL Tube Complete Assembly	
AH0-9347	Presston 100 Positive Pressure Manifold, 3 mL Tube Complete Assembly	
AH0-9343	Presston 100 Positive Pressure Manifold, 6 mL Tube Complete Assembly	

The Presston 100 96-Well Positive Pressure Manifold can also process 1, 3, and 6 mL tubes using the following adapter kits.

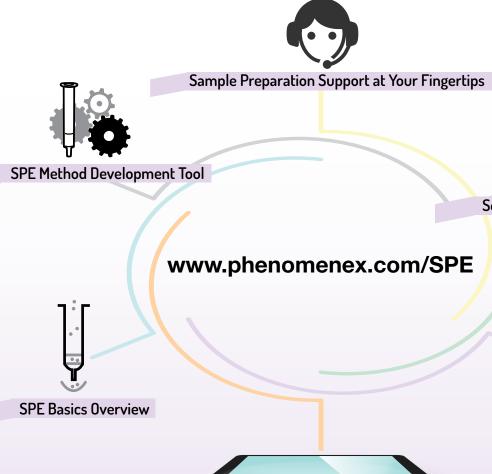
Phenomenex warrants that for a period of 12 months following delivery, the Presston 100 Positive Pressure Manifold you have purchased will perform in accordance with the published specifications and will be free from defects in materials or workmanship. In the event that the Presston 100 Positive Pressure Manifold does not meet this warranty, Phenomenex will repair or replace defective parts.

Please visit www.phenomenex.com/Presston for complete warranty information.

27

KINETEX.

Kinetex Columns


2.6 µm Minibore Columns (mm)			Sec	urityGuard [*]	
Phases	30 x 2.1	50 x 2.1	75 x 2.1	100 x 2.1	150 x 2
Biphenyl	00A-4622-AN	00B-4622-AN		00D-4622-AN	00F-4622
XB-C18	00A-4496-AN	00B-4496-AN	00C-4496-AN	00D-4496-AN	00F-4496
C8	00A-4497-AN	00B-4497-AN	00C-4497-AN	00D-4497-AN	00F-4497

2.6 µm Analytical Columns (mm)			Sec	urityGuard	
Phases	30 x 4.6	50 x 4.6	75 x 4.6	100 x 4.6	150 x 4
C18	00A-4462-E0	00B-4462-E0	00C-4462-E0	00D-4462-E0	00F-446

5 µm Minibore Columns (mm)		ım) Securi	ityGuard™ ULTRA Cartridges‡
Phases	50 x 2.1	100 x 2.1	3/pk
C8	00B-4608-AN	00D-4608-AN	AJ0-8784
		•	for 2.1 mm ID

5 µm Analytical Columns (mm)				SecurityGuard [™]	ULTRA Car
Phases	50 x 4.6	100 x 4.6	150 x 4.6	250 x 4.6	3/pl
C8	00B-4608-E0	00D-4608-E0	00F-4608-E0	00G-4608-E0	AJ0-87
					for 4.6 m

*SecurityGuard ULTRA Cartridges required holder, Part No.: AJ0-9000.

Tools and Resources

Zebron GC Columns

ZB-MultiResidue [™] -1			
ID(mm)	df(µm)	Temp. Limits °C	Part No.
20-Meter			
0.18	0.18	-60 to 320/340	7FD-G016-08
30-Meter			
0.25	0.25	-60 to 320/340	7HG-G016-11
0.32	0.25	-60 to 320/340	7HM-G016-11
0.32	0.50	-60 to 320/340	7HM-G016-17
0.53	0.50	-60 to 320/340	7HK-G016-17

" ULTRA Cartridges‡			
.1	3/pk		
-AN	AJ0-9209		
-AN	AJ0-8782		
-AN	AJ0-8784		
	for 2.1 mm ID		
™ ULTRA Cartridges [‡]			
.6	3/pk		
2-E0	AJ0-8788		
	for 4.6 mm ID		

Search Hundreds of Applications

Syringe Filter Finder

The Complete Guide to Solid Phase Extracton (SPE)

A Method Development and Application Guide

Australia t: +61 (0)2-9428-6444 f: +61 (0)2-9428-6445 auinfo@phenomenex.com

Austria t: +43 (0)1-319-1301 f: +43 (0)1-319-1300 anfrage@phenomenex.com

- Belgium t: +32 (0)2 503 4015 (French) t: +32 (0)2 511 8666 (Dutch)
- f: +31 (0)30-2383749
- beinfo@phenomenex.com

Canada t: +1 (800) 543-3681 f: +1 (310) 328-7768 info@phenomenex.com

China

t: +86 400-606-8099 f: +86 (0)22 2532-1033

phen@agela.com

- Denmark t: +45 4824 8048
- f +45 4810 6265
- nordicinfo@phenomenex.com

Finland

t: +358 (0)9 4789 0063 f: +45 4810 6265 nordicinfo@phenomenex.com

France t: +33 (0)1 30 09 21 10 f: +33 (0)1 30 09 21 11 franceinfo@phenomenex.com

Germany t: +49 (0)6021-58830-0 f: +49 (0)6021-58830-11 anfrage@phenomenex.com

India

t: +91 (0)40-3012 2400 f: +91 (0)40-3012 2411 indiainfo@phenomenex.com

Ireland

t: +353 (0)1 247 5405 f: +44 1625-501796 eireinfo@phenomenex.com

Italv

t: +39 051 6327511 f: +39 051 6327555 italiainfo@phenomenex.com

phenomenex .breaking with tradition^s

www.phenomenex.com

Ph<mark>enomenex</mark> products are available worldwide. For the distributor in your country, contact Phenomenex USA, International Department at international@phenomenex.com

Trademarks Strata and Kinetex are registered trademarks of Phenomenex. Zebron, Tall-Boy, SecurityGuard, MultiResidue, and Presston are trademarks of Phenomenex. Agilent, Bond Elut, SampliQ are registered trademarks of Agilent Technologies. Waters, Oasis, and Sep-Pak are registered trademarks of Waters Corp. Supelco and Discovery are registered trademarks of Sigma-Aldrich, Co. LLC. UCT is a registered trademark of United Chemical Technologies. Biotage, IST, and Isolute are registered trademarks of Biotage. Dursban is a registered trademark of Dow Agro Sciences LLC. Triple Quad and API 4000 are trademarks of AB SCIEX Pte. Ltd. AB SCIEX" is being used under license.

Disclaimer

≥

BR41280317_

Phenomenex is not affiliated with Waters Corp., Sigma Aldrich, Co. LLC., United Chemical Technologies, or Biotage

Strata-X is patented by Phenomenex. U.S. Patent No. 7,119,145

© 2017 Phenomenex, Inc. All rights reserved.

Luxembourg t: +31 (0)30-2418700

f: +31 (0)30-2383749 nlinfo@phenomenex.com

Mexico t: 01-800-844-5226

- f: 001-310-328-7768
- tecnicomx@phenomenex.com

The Netherlands t: +31 (0)30-2418700

f: +31 (0)30-2383749 nlinfo@phenomenex.com

New Zealand t: +64 (0)9-4780951

- f: +64 (0)9-4780952 nzinfo@phenomenex.com

Norway t: +47 810 02 005

- f: +45 4810 6265 nordicinfo@phenomenex.com

Puerto Rico t: +1 (800) 541-HPLC

f: +1 (310) 328-7768 info@phenomenex.com

- **Spain** t: +34 91-413-8613
- f: +34 91-413-2290
- espinfo@phenomenex.com

Sweden t: +46 (0)8 611 6950

f: +45 4810 6265 nordicinfo@phenomenex.com

United Kingdom t: +44 (0)1625-501367

- f: +44 (0)1625-501796
- ukinfo@phenomenex.com

- **USA** t: +1 (310) 212-0555 f: +1 (310) 328-7768
- info@phenomenex.com

info@phenomenex.com