() SHIMADZU

Multiple ion chromatogram (MIC) for direct quantification of intact proteins using Q-TOF mass spectrometry

Yonghai Lu¹, Jie Xing¹, Djohan Kesuma¹, Zhaoqi Zhan¹

¹ Application Development & Support Centre (ADSC), Shimadzu (Asia Pacific), Singapore

1. Overview

- A MIC method was developed for direct quantitative analysis of intact proteins using LCMS-9030 Q-TOF mass spectrometry
- This MIC assay can be used to accurately and precisely monitor intact protein levels throughout the process of production, characterization, and clinical uses

2. Introduction

Mass spectrometry (MS) has emerged as a powerful analytical technique for direct quantification of intact proteins. In quantifying intact proteins, selected ion monitoring (SIM) and multiple reaction monitoring (MRM) methods have been reported by using triplequadrupole (QQQ) mass spectrometry. Because of a low dynamic range, there is lack of studies of intact protein quantification using quadrupole time-of-flight (Q-TOF) mass spectrometry. However, Q-TOF has the advantages of high-resolution accurate mass. In this study, we aimed to identify, investigate, and demonstrate the performance of multiple ion chromatogram (MIC) for direct quantification of intact proteins using a Shimadzu LCMS-9030 Q-TOF mass spectrometry.

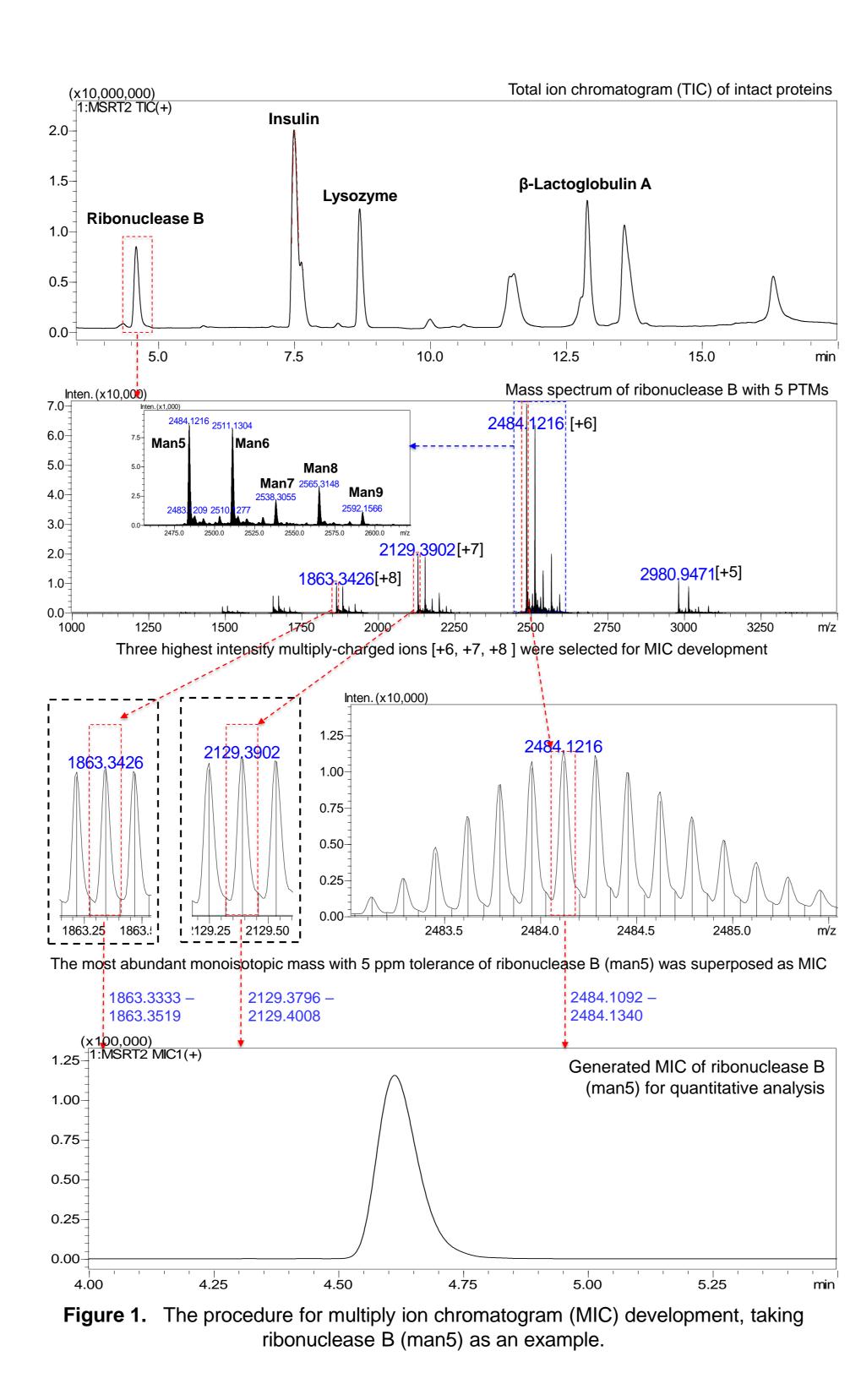
3. Methods

3.1 Protein Standards

Protein standard MSRT2 set including ribonuclease B (~15.0 kDa), insulin (5.8 kDa), lysozyme (14.3 kDa), and β-lactoglobulin A (18.4 kDa) was purchased from Sigma-Aldrich. Ribonuclease B is a mix of five sialylated glycans (man5, 6, 7, 8, and 9).

3.2 Sample preparation and analytical conditions

Protein standards were dissolved in the Milli-Q water with 0.1% trifluoroacetic acid (TFA) (stock solution, 200 µg/mL) and diluted to different working solutions for calibration curves, ranging from 1 to 200 µg/mL. The samples were directly injected and analyzed by a Shimadzu LCMS-9030 Q-TOF mass spectrometry. The analytical conditions are shown in Table 1


Column	ProteCol-G C8 (100 mm x 2.1 mm; 3 μm)				
Flow rate	0.3 mL/min				
Mobile	A: 0.1% TFA in water				
phase	B:0.1% TFA in acetonitrile				
Elution mode	Gradient elution, 20%B (0 min) → 60%B (20 min) → 80%B (20.5 min) → 80%B (23.5 min) → 20%B (24 min) → 20%B (30 min)				
Oven temp.	50°C				
Injection vol.	5.0 µL				

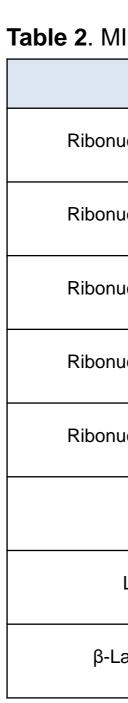
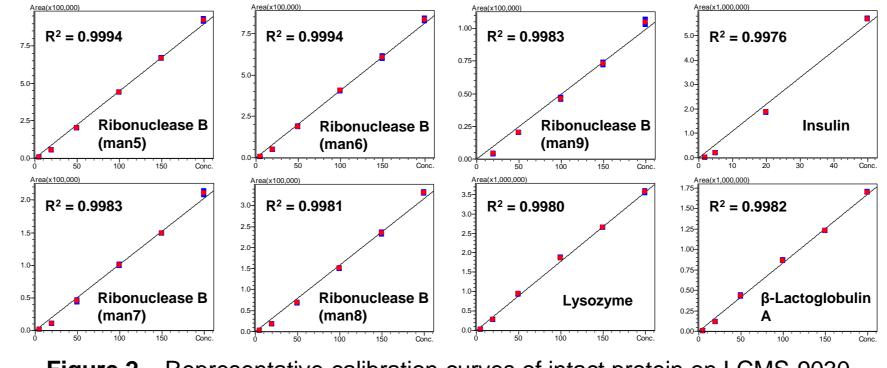

Interface & temp.	Heated ESI, 300°C		
Mass range	m/z 1000-3500 (+)		
Interface voltage	4 KV		
Heat Block temp.	400°C		
DL temp.	250°C		
Nebulizing gas flow	N ₂ , 3.0 L/min		
Drying gas flow	N ₂ , 15.0 L/min		
Heating gas flow	Zero air, 10.0 L/min		

Table 1. Analytical conditions on LCMS-9030


3.3 MIC method development

In MIC method development, three highest intensity ion signals were first selected from multiply-charged ion envelope of each protein, and further the most abundant monoisotopic mass from each respective multiply-charged ion was chosen and superposed as MIC, with 5 ppm tolerance of m/z. The procedure is shown in Figure 1, taking ribonuclease B (man5) as an example. MIC settings are summarized in Table 2.

4. Results

TP 658

Table 2. MIC settings of intact proteins

5						
Protein	MIC No.	MIC settings				
Trotom		Peak No.	Start m/z	End m/z		
uclease B (man5)		1	1863.3333	1863.3519		
	MIC1	2	2129.3796	2129.4008		
		3	2484.1092	2484.1340		
uclease B (man6)		1	1883.5913	1883.6101		
	MIC2	2	2152.6760	2152.6976		
		3	2511.1178	2511.1430		
uclease B (man7)		1	1903.9708	1903.9898		
	MIC3	2	2175.8233	2175.8451		
		3	2538.2928	2538.3182		
uclease B (man8)	MIC4	1	1924.2276	1924.2468		
		2	2198.9763	2198.9983		
		3	2565.3020	2565.3276		
uclease B (man9)	MIC5	1	1944.4848	1944.5042		
		ase B (man9) MIC5		2221.9890	2222.0112	
		3	2592.1436	2592.1696		
Insulin		1	1162.5307	1162.5423		
	MIC6	2	1452.9133	1452.9279		
		3	1936.8812	1936.9006		
Lysozyme	MIC7	1	2044.5438	2044.5642		
		2	2385.1347	2385.1585		
		3	2861.9615	2861.9901		
_actoglobulin A		1	1670.4030	1670.4198		
	MIC8	2	1837.3422	1837.3606		
		3	2041.3810	2041.4014		

Six-point calibration curves for the proteins (except insulin, 4 points) were generated in duplicates (Figure 2). Linearities, linear range, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision and matrix effect were determined (Table 3). Respective linearities (R² >0.997) were achieved for ribonuclease B (man5, 6, 7, and 8), lysozyme, and β -lactoglobulin A in the range of 5 – 200 µg/mL, ribonuclease B (man9) in the range of 20 – 200 µg/mL, and insulin in the range of 2 – 50 µg/mL. LOD and LOQ for the proteins ranged from 0.32 to 5.40 µg/mL and 1.13 to 17.99 µg/mL, respectively. The accuracy and precision tests were performed at low (n = 4) and medium (n = 4)concentrations within their respective calibration ranges. The errors in accuracy are under 20%, and the prevision is demonstrated with less than 15% RSD.

Figure 2. Representative calibration curves of intact protein on LCMS-9030

The matrix effect is an important consideration when quantifying analytes from biological samples using ESI mass spectrometry. In this study, human serum and urine were used as sample matrices to evaluate the specificity and the feasibility of the MIC method. Matrix effect was evaluated at a concentration of 20 µg/mL. A general increase in response for all the eight proteins was observed both in serum and urine matrices. In such cases of direct quantification of intact proteins using the introduced MIC method, it is important to assess the prevalence of matrix effects. However, this is no different than standard best practices used for MRM methods.

Protein	Linearity (R ²)	Linear range (µg/mL)	LOD (µg/mL)	LOQ (µg/mL)	Prepared conc. (µg/mL)	Measured conc. (µg/mL)	Accuracy (%)	Prevision (% RSD)	Matrix effect Serum (%)	Matrix effect Urine (%)	
Ribonuclease B (man5) 0.99	0.9994	5 - 200	0.63	2.10	20	18.73 ± 0.63 (n=4)	93.67	5.41	153	140	
	0.0004	0 200	0.00		100	102.28 ± 0.71 (n=4)	102.28	0.75	-	-	
Ribonuclease B (man6) 0.	0.9994	5 – 200	0.63	2.10	20	18.84 ± 0.29 (n=4)	94.22	2.38	149	135	
	0.0004				100	103.06 ± 0.82 (n=4)	103.06	0.85	-	-	
Ribonuclease B (man7) 0.99	0 9983	0.9983 5 – 200	0.91	3.04	20	17.64 ± 0.77 (n=4)	88.21	8.05	163	141	
	0.0000		0.31		100	102.44 ± 1.78 (n=4)	102.44	1.89	-	-	
Ribonuclease B (man8) 0.	0.9981	5 – 200	1.35	4.50	20	18.91 ± 0.45 (n=4)	94.55	4.41	155	143	
	0.0001 0 -				100	102.07 ± 1.65 (n=4)	102.07	1.77	-	-	
Ribonuclease B (man9) 0	0.9983 20	20 - 200) 5.40	17.99	20	22.88 ± 1.02 (n=4)	114.38	12.22	165	141	
					100	102.19 ± 3.36 (n=4)	102.19	3.84	-	-	
Insulin 0.99	0 9976	0.9976 2 - 50	2 - 50 0 51	0.51	51 1.71	6	7.17 ± 0.03 (n=4)	119.46	0.82	-	-
	0.3370		0.51	1.71	20	17.02 ± 0.97 (n=3)	85.12	6.97	182	158	
Lysozyme 0.9	0.9980 5 - 20	5 - 200	00 1.08	3.59	20	17.26 ± 0.58 (n=4)	86.30	3.77	172	137	
	0.3300				100	106.98 ± 0.61 (n=4)	106.98	0.58	-	-	
β-Lactoglobulin A	0.9982	.9982 5 - 200	00 0.34	1.13	20	16.25 ± 0.30 (n=4)	81.27	2.41	123	132	
					100	98.39 ± 0.67 (n=4)	98.27	0.71	-	-	

5. Conclusion

We proposed a straightforward method based on the MIC of Q-TOF mass spectrometry to directly and quickly quantify intact proteins without the need for preliminary digestion. By combining several multiply-charged ion signals, the methodology demonstrated a high sensitivity for use in quantifying intact proteins – down to 2 µg/mL. Ion enhancement was observed for target proteins in serum and urine matrices, and therefore matrix effects should be considered in the context of specific applications. However, this is no different than standard best practices used for small molecule quantification.

References

- Toxicol. 11 (1998): 953-961.

(RUO). Not for use in diagnostic procedures.

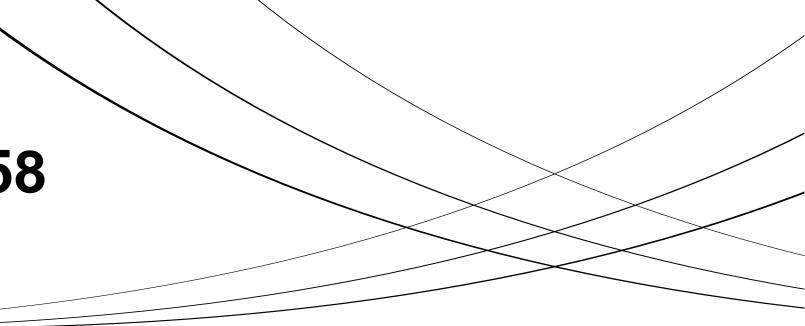


Table 3. Method evaluation for MIC-based intact protein quantification

^{1.} Mao Y, Moore RJ, Wagnon KB, Pierce JT, Debban KH, Smith CS, Dill JA, Fuciarelli AF, "Analysis of α2u-globulin in rat urine and kidneys by liquid chromatography-electrospray ionization mass spectrometry", Chem. Res.

^{2.} Wang EH, Combe PC, Schug KA, "Multiple Reaction Monitoring for Direct Quantitation of Intact Proteins Using a Triple Quadrupole Mass Spectrometer", J. Am. Soc. Mass Spectrom. 27 (2016): 886-896.

Disclaimer: The products and applications in this poster presentation are intended for Research Use Only