

Application News

UV-1900i Plus UV-Vis Spectrometer, LabSolutions™ DBCS Multi Data Report

Analysis of the Degree of Coloration of Liquids Compliant to European Pharmacopeia

 Benjamin Thomas
 Shimadzu Europa GmbH

User Benefits

- ◆ Semi-Automated analysis with LabSolutions UV-Vis and Multi Data Report.
- ◆ Fully Part 11 CFR compliant through use of audit trail and electronic signatures for raw data and report.
- ◆ Highly customizable to fit any corporate identity, SOP or other applicable documents.

■ Introduction

Chapter 2.2.2. Degree of Coloration of Liquids of the European Pharmacopeia (short EP in the following text) specifies how to determine the coloration of a liquid sample, which is an important criterion in pharmaceutical quality control.[1] By definition, a liquid is colorless if it has the appearance of water or the solvent used in its preparation.

Several reference solutions are specified in this chapter, which are created from mixing yellow, red and blue primary solutions. In the past, each of these solutions was compared visually to a sample as shown in Fig. 1.

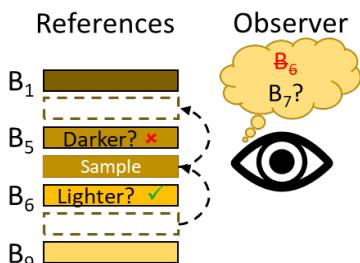


Fig.1 Schematic of visual color comparison

Since EP 10.3, using a spectrophotometer and software-based analysis is allowed as alternative to this traditional method. In this application, a semi-automated approach is shown that uses LabSolutions UV-Vis Color analysis software and the LabSolutions Multi Data Report to assign the correct color number to a sample. This solution significantly reduces the number of manual steps and allows full traceability of the data via audit trail and electronic signatures for raw data, templates and finished reports.

■ Sample Preparation

Commercially available primary solutions (Carl Roth ROTI Calipure Reag. Ph. Eur., Primary solution) and hydrochloric acid (10 g/L HCl in water) were mixed according to the recipes in table 2.2.2.1. of EP 11.5 to create the brown (B), brownish-yellow (BY), yellow (Y), greenish yellow (GY) and red (R) stock solutions.

Each stock solution was diluted with hydrochloric acid (10 g/L HCl in water) to create the dilution series of B₁ to B₉, BY₁ to BY₇, Y₁ to Y₇, GY₁ to GY₇ and R₁ to R₇ following the recipes specified in tables 2.2.2-2. to 2.2.2-6. in EP10.

Disposable 10 mm cells (Brand plastic square cells, 10 mm pathlength, 340 – 900 nm transparency range) were filled with the reference solutions as shown in Fig. 2, for use in the UV-1900i Plus UV-Vis Spectrophotometer.

Reference solutions B₁, B₄, BY₁, BY₃, GY₁, GY₃, R₁, R₃ and Y₃ were remeasured in different cells (Hellma, 10 mm, Quartz), to create slightly different spectra and simulate "unknown" samples for testing the analysis procedure.

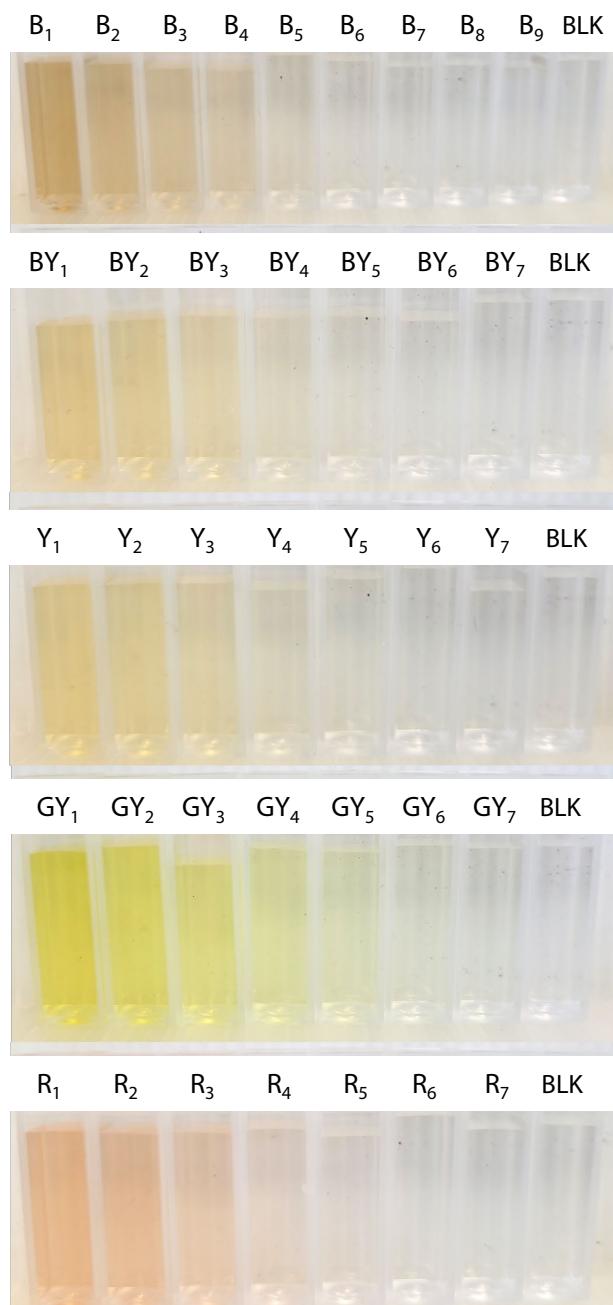


Fig. 2 from top to bottom: Series of reference solutions B, BY, Y, GY, and R.

■ Color Coordinates

The instrumental method to determine the degree of coloration is based on the CIE color model.[2,3] This model describes a three-dimensional color coordinate system: Lightness index L^* ranges from black (0) to white (100), color coordinate a^* ranges from green ($a^* < 0$) to red ($a^* > 0$) and color coordinate b^* ranges from blue ($b^* < 0$) to yellow ($b^* > 0$), as shown in Fig. 3. Instead of the cartesian coordinates a^* and b^* , the polar coordinates C^* (chroma, distance to the L^* -axis) and h^* (hue, angle to the a^* axis) can be used to describe a color in the CIE system.

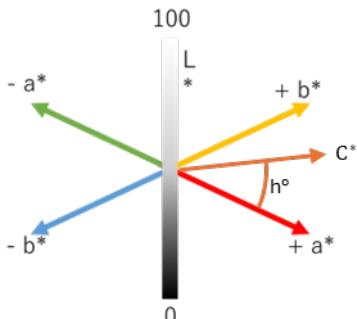


Fig. 3 Coordinate system of the CIELAB color model.

Since color stimulus is highly individual and depends on the lighting conditions (e.g. warm yellow light vs. cold white light), standard illuminant and observer are specified for the conversion from a UV-Vis transmittance spectrum to color coordinates by the equations given in ASTM E 308.

Fig. 4 shows the sensitivity to red, green and blue color stimulus of the 2° standard observer and the emissivity of standard illuminant C as specified in EP 11.5.

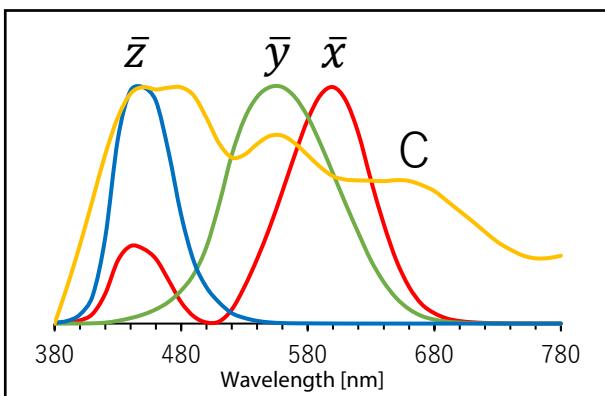


Fig.4 Tristimulus curves \bar{x} (red line), \bar{y} (green line) and \bar{z} (blue line) and standard illuminant C (yellow line) from ASTM E 308, normalized values.

Illuminant C simulates the conditions of bright daylight, while the 2° standard observer simulates the color stimulus of an object observed at close range. Therefore, these parameters approximate the conditions specified for the visual comparison well.

■ Analysis Condition

The UV-1900i Plus (shown in Fig 5) was used, as it comes perfectly equipped for analysis compliant to European Pharmacopoeia: It has a fixed slit for 1 nm spectral bandwidth, a dual-beam optical layout and comes with build-in EP validation functions, which can be set to be forced on each startup of the instrument to ensure EP compliant data acquisition.

Fig. 5 UV-1900i Plus UV-Vis spectrophotometer

The system can be used in standalone mode via integrated touchscreen with a simple user management and security functions. Here, it was connected to LabSolutions UV-Vis DB for CFR Part 11 compliant data integrity and automated color analysis. In a high-throughput scenario it can be connected to an Autosampler with flow cell for automated analysis of up to 360 samples.

The measurement parameters are shown in Table 1.

Table 1 Analysis Conditions of UV-1900i Plus

System	: UV-1900i Plus
Wavelength Range	: 800 to 380 nm
Data Interval	: 1 nm
Scan Speed	: Medium
Value Type	: Transmittance T%
Slit Width	: 1 nm (fixed)
Light Source Switch	: 340 nm

The EP specifies the following workflow for determining the degree of coloration of a liquid from UV-Vis spectrum data:

1. Measure water R as blank (100 T% by definition).
2. Measure each reference solution and sample.
3. Calculate the CIE values L^* , a^* and b^* or L^* , C^* and h^*
4. Calculate the LAB or LCh color difference for each combination of sample and reference:
 - $\Delta E = \sqrt{(\Delta L^*)^2 + (\Delta a^*)^2 + (\Delta b^*)^2}$
 - $\Delta E = \sqrt{(\Delta L^*)^2 + (\Delta C^*)^2 + (\Delta h^*)^2}$
5. Assign to each sample the color number of the reference, which had the smallest color difference ΔE

The lightness index L^* and color coordinates a^* and b^* were calculated with LabSolutions UV-Vis Color software. The calculation parameters are shown in Table 2. The evaluation template was set up so that each measured spectrum was automatically added after the measurement.

Table 2 Detail settings for the calculation of L^* , a^* and b^*

Color System	: CIELAB
Evaluation value	: L^* , a^* , b^* , C^* and h^*
Standard	: ASTM E308-22
Colorimetric Illuminant	: C
Observation Field of view	: 2°
Number of decimal	: 3

For the calculation of the color difference and automated assignment of the correct color number, a multi data report template was prepared. This tool collects multiple raw data files in a single report. The EP Degree of Coloration report template uses a combination of VLOOKUP() and HLOOKUP() to assign the color number of the best fitting reference to each sample. This final step can be quite tedious without automated data analysis, especially if many samples are measured in a short time. For each sample, 37 values of ΔE must be calculated to find the correct degree of coloration.

■ Multi Data Report Template

The multi data report (short MDR) is a module of LabSolutions to combine data from multiple raw data files into a single report. The report editor allows to prepare equations as typical for spreadsheet software, but the input values are read from the data files just as this template is used to print a report. No manual changes are possible in the final report and data integrity is preserved.

For this application, a report template was prepared that collects the color coordinates of all unknown samples into one table and the color coordinates of all reference solutions into a second table as shown in Fig. 6

EP10 Degree of Coloration						
Sample Table						
File Name	Sample Name Option	L^*	a^*	b^*	Color	
EP10 - 0-66-2 - UV1900_Quartz_B1.vspd	Sample 1 B1	89.304	-0.510	24.143	B1	0.99
EP10 - 0-67-2 - UV1900_Quartz_B4.vspd	Sample 2 B4	96.276	-1.066	9.572	B4	0.31
EP10 - 0-68-2 - UV1900_Quartz_BY1.vspd	Sample 3 BY1	94.899	-6.548	29.929	BY1	1.15
EP10 - 0-69-2 - UV1900_Quartz_BY3.vspd	Sample 4 BY3	97.411	-4.850	16.603	BY3	0.63
EP10 - 0-70-2 - UV1900_Quartz_BY1.vspd	Sample 5 GY1	96.317	-22.271	72.690	GY1	2.04

Standard Table						
File Name	Sample Name Option	L^*	a^*	b^*	Color	
EPCColor_UV1900_GY_001.vspd	GY1	96.247	-22.147	70.659	GY1	0
EPCColor_UV1900_GY_002.vspd	GY2	97.262	-21.142	59.637	GY2	0
EPCColor_UV1900_GY_003.vspd	GY3	98.161	-18.576	45.796	GY3	0
EPCColor_UV1900_GY_004.vspd	GY4	99.068	-12.941	27.554	GY4	0
EPCColor_UV1900_GY_005.vspd	GY5	99.495	-8.017	15.698	GY5	0

Fig. 6 Print preview of the multi data report for degree of coloration

Contrary to normal spreadsheet software, the table is populated using repeat rows and the sheet is protected when the final report is generated. The repeat row function adds new rows for each raw data file when the final report is generated. It is not necessary to know the number of expected samples when the template is created.

Filters can be set when specifying the repeat row. Therefore, the multi data report can be structured independently from the structure of each raw data file. For example, Fig. 7 shows the filter conditions for reading only values from reference solutions. Any other data is ignored for populating this specific repeat row.

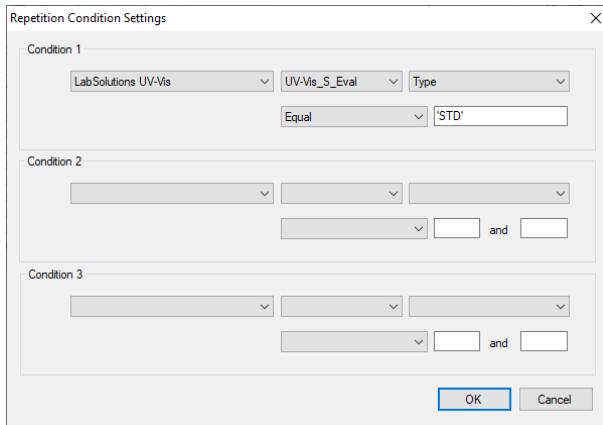


Fig. 7 Repetition conditions of the standard table in the MDR template

Up to three filter conditions can be set for each repeat row to further specify the fine structure of the report template. For example: By adding a filter for sample name, the standard table can be grouped by dilution series (B, R, etc.) instead of listing all reference values in arbitrary order.

The calculation of ΔE for each combination of sample and standard is done in hidden cells of the sheet, as shown in Fig. 8.

	Sample Table						Hide these columns in final			
	Sample Name	L*	a*	b*	Color	ΔE	dE min	B1	B2	
Repeat	Sample 1	89.304	-0.510	24.143	B1	0.99	0.987	0.987	=SORT(IV)	
								B1	B2	
	Standard Table									
	Sample Name	L*	a*	b*	Color	ΔE				
Repeat	B1	88.755	-0.210	24.906	B1	0				

Fig. 8 Color difference calculation in the MDR template, part 1

In this application, one column is dedicated to each reference solution. VLOOKUP() is used to read the corresponding color coordinates from the standard table and calculate the color difference between each reference solution and the sample which is shown in the same row. For example: The color coordinates of Sample 1 are shown in row 5. The color difference between Sample 1 and reference B₁ is calculated in cell M5. The color coordinates from reference solution B₂ are found via VLOOKUP() to calculate the color difference between Sample 1 and reference B₂ in cell N5.

In the sample table, HLOOKUP() is used to find the name of the reference solution, which has the lowest color difference to the sample in the same row. The exact formula for Sample 1 in row 5 is shown in Fig. 9, the range of HLOOKUP() is adjusted with the OFFSET() function as the table grows dynamically with each repeat row when measured data is added to the report.

	Sample Table						Hide these columns in final			
	Sample Name	L*	a*	b*	Color	ΔE	dE min	B1	B2	
Repeat	Sample 1	89.304	-0.510	24.143	=HLOOK	0.99	0.987	0.987	7.097	
								B1	B2	
	Standard Table									
	Sample Name	L*	a*	b*	Color	ΔE				
Repeat	GY1	96.247	-22.147	70.659	GY1	0				

Fig. 9 Color difference calculation in the MDR template, part 2

In this example, reference B₁ had the lowest color difference of all combinations between Sample 1 and any reference solution and this value is $\Delta E = 0.987$.

■ Measurement Results – Standards

The spectra of each stock solution are shown in Fig. 10. Only the spectrum of solution B₁ has distinct peaks.

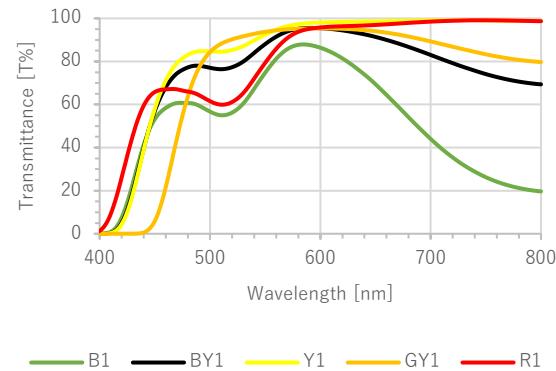


Fig. 10 Spectra of reference solutions B₁, BY₁, Y₁, GY₁ and R₁

The progression of color coordinates a* and b* for each series of reference solutions is shown in Fig. 10. The shade in the background of each image reflects the color impression at the average L* value of each series.

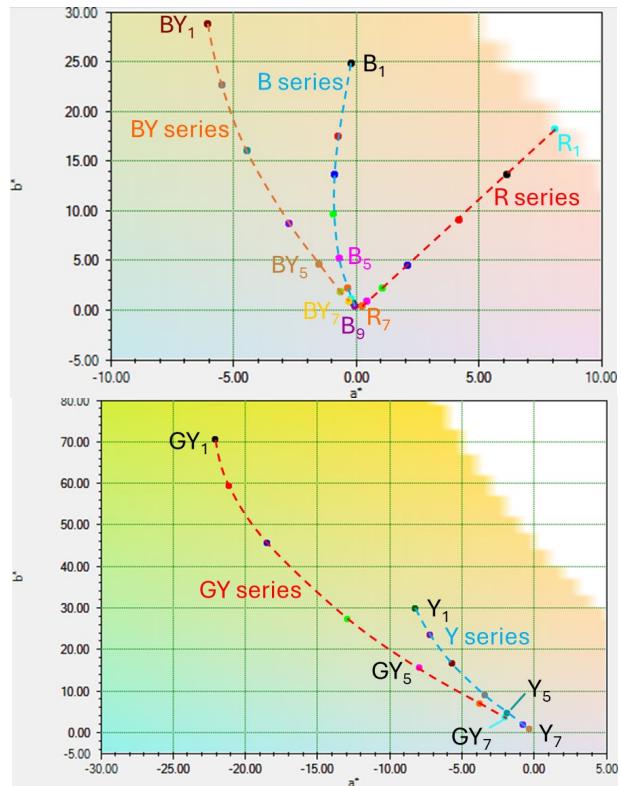


Fig. 11 CIELAB a* and b* values of each reference solution

As visible from Fig. 11, the color coordinates of all dilution series converge towards the same point of the nearly colorless blank with L* = 100 and a* = b* = C* = 0. The hue is nearly constant for each dilution series. As expected from lightly colored samples, even the stock solutions have very high L* values close to 100. The color coordinates L*, a*, b*, chroma and hue of the highest and lowest concentration of each reference solution are shown in Table 3.

Table 3 CIE color coordinates of each highest and lowest reference

Name	L*	a*	b*	C*	h°
B1	88.76	-0.21	24.91	24.91	90.48
B9	99.84	-0.05	0.50	0.5	96.07
BY1	94.89	-6.09	28.88	29.51	101.91
BY7	99.78	-0.33	1.00	1.05	108.09
Y1	96.83	-8.28	30.05	31.17	105.4
Y7	99.89	-0.39	1.03	1.1	110.61
GY1	96.25	-22.15	70.66	74.05	107.4
GY7	99.86	-2.04	3.71	4.23	118.77
R1	92.06	8.05	18.22	19.92	66.17
R7	99.79	0.21	0.48	0.52	66.55

■ Measurement Results – Test Samples

As explained before, some reference solutions were remeasured in different cells (Quartz instead of plastic). As the absorbance of quartz and plastic are slightly different, the calculated color coordinates are different too.

These spectra were used as “unknown” samples to test, if the multi data report would show the expected color coordinate difference and EP degree of coloration analysis.

The results are shown in Table 4.

Table 4 EP Degree of Coloration results of the test samples

Sample Name	L*	a*	b*	C*	h°	EP Color	ΔE _{ab}	ΔE _{Ch}
B1 Quartz	89.30	-0.51	24.14	24.15	91.21	B1	0.99	1.18
B4 Quartz	96.28	-1.07	9.57	9.63	96.36	B4	0.31	0.81
BY1 Quartz	94.90	-6.55	29.93	30.64	102.34	BY1	1.15	1.2
BY3 Quartz	97.41	-4.85	16.60	17.30	106.28	BY3	0.63	0.96
Y3 Quartz	98.48	-5.95	17.16	18.16	109.12	Y3	0.51	0.58
GY1 Quartz	96.32	-22.27	72.69	76.03	107.03	GY1	2.04	2.01
GY3 Quartz	98.21	-18.90	47.06	50.71	111.89	GY3	1.3	1.31
R1 Quartz	92.18	7.76	18.80	20.34	67.58	R1	0.65	1.47
R3 Quartz	96.09	3.91	8.88	9.71	66.24	R3	0.42	0.79

Since the spectra are slightly different depending on the cell material, the color difference ΔE is not zero for any combination of reference solution (plastic) and test solution (quartz), but the expected EP Degree of Coloration is found for each test solution.

■ Further Customization of the Template

In this example, the sample name of each reference solution was used as search criterium for the VLOOKUP() and HLOOKUP() functions. It is possible to use any other sample information (Sample ID, Option or Comment) instead.

The multi data report template can be further customized to contain any information required by existing processes and fit the corporate identity. Fig. 12 shows an example, where the target color number of each sample was typed into the Option field at the time of measurement and the IF() function and conditional formatting were added to the report template for a pass/fail judgement of each sample.

Sample Table						
Sample Name	Target Color	L*	a*	b*	Color	ΔE
Sample 1	GY1	96.317	-22.271	72.690	GY1	2.04
Sample 2	R3	96.089	3.910	8.883	R3	0.42
Sample 3	BY2	4.968	-1.009	-0.843	B1	87.66
Sample 4	BY4	96.276	-1.066	9.572	B4	0.31

Fig. 12 Screenshot from a multi data report with pass/fail judgement

In this example, the expected EP Degree of Coloration values are assigned to the first two samples. Sample 3 is much too dark (low L* value) and fails with a very high color difference to the closest EP degree of coloration. Sample 4 has a color intensity in the expected range, but a different tint than expected. Instead of the expected degree of coloration BY4, it has degree of coloration B4.

■ References

[1] European Directorate for the Quality of Medicines & HealthCare (EDQM). European Pharmacopoeia, 11.5 ed., 2.2.2. Degree of coloration of liquids. Strasbourg: EDQM, 2021.

[2] ASTM Standard E 308, 2018, “Standard Practice for Computing the Colors of Objects by Using the CIE System”, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 2018, doi: 10.1520/E0308-18, www.astm.org

[3] Colorimetry, 4th Edition, CIE technical report 15:2018, 2018, doi: 10.25039/TR.015.2018

LabSolutions is a trademark of Shimadzu Corporation or its affiliated companies in Japan and/or other countries.

Shimadzu Corporation
www.shimadzu.com/an/

SHIMADZU Europa GmbH,
www.shimadzu.eu

For Research Use Only. Not for use in diagnostic procedures.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. See <http://www.shimadzu.com/about/trademarks/index.html> for details.

Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol “TM” or “®”.

Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you “as is” without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

05-SCA-100-028-EN

First Edition: Jan. 2026

➤ Please fill out the survey

Related Products

Some products may be updated to newer models.

➤ **UV-1900i**
UV-VIS Spectrophotometer

➤ **LabSolutions™ DB**
Analysis Data System

➤ **LabSolutions UV-Vis**
Analytical Data System for UV-Vis
Spectrophotometer...

Related Solutions

➤ **Pharmaceutical and
Biopharmaceutical**

➤ **Small Molecule
Pharmaceutical**

➤ **Price Inquiry**

➤ **Product Inquiry**

➤ **Technical Service /
Support Inquiry**

➤ **Other Inquiry**