

Application News

EPMA-8050G Electron Probe Microanalyzer

State Analysis of Iron Oxides in Sintered Ore for Steel Manufacturing after Hydrogen Reduction

Satoshi Yoshimi, Hiroshi Hayashi

User Benefits

- ◆ The mineral structure of sintered ore can be investigated by quantitative mapping of Al, Mg, Si, Ca, and Fe.
- ◆ EPMA analysis is a useful technique in research on the composition of the calcium ferrite phase due to differences in the reduction reaction depending on the furnace temperature.
- ◆ Investigation of the oxidation state of iron is useful in study of the production conditions for sintered ore, such as oxidation and reduction.

■ Introduction

Reduction of carbon dioxide (CO_2) emissions is being promoted with the aim of achieving carbon neutrality in 2050. In the hydrogen reduction ironmaking process, iron ore is reduced with hydrogen (H_2) in place of coke (C), forming water (H_2O) instead of CO_2 , thereby reducing CO_2 emissions. Targeting a reduction of 10 % or more in CO_2 emissions, research on a hydrogen reduction technology using hydrogen in the blast furnace is now underway in the Japanese national project COURSE50, focusing on reduction of the heat requirement and optimization of the reaction conditions of the raw materials, together with circulating use of gas with a regenerated reduction capacity, by promoting hydrogen reduction, which is a smaller endothermic reaction than direct reduction by coke. Development of a Super COURSE50 technology has also begun, and will make it possible to inject a larger amount of hydrogen into the blast furnace.

This article introduces a state analysis of the iron oxides in sintered ore, which was carried out by measuring the detailed spectra of micro-regions in sintered iron ore after hydrogen reduction using an EPMA™ electron probe microanalyzer (EPMA-8050G).

■ Sintered Ore Structure after Hydrogen Reduction

One issue for increasing hydrogen reduction in the blast furnace process is maintaining a high temperature in the Since reduction

reaction by hydrogen is an endothermic reaction that absorbs heat, the temperature distribution in the furnace changes, and the low temperature region expands, resulting in remarkable low-temperature reduction powdering of the burden materials. Heat compensation is necessary to suppress this type of powdering, but leads to an increase in coke consumption.

The element distribution images in Fig. 1 and Fig. 2 show the result of conversion of the various elements in sintered ore to the mass percentage concentration (wt%) of a simple oxide (in case of Fe, Fe_2O_3).

Fig. 1 shows the results for sintered ore sintered at a low temperature of up to 600 °C under a high H_2 blast furnace condition. Since the reduction reaction was incomplete, the COMPO image contains iron oxides, which appear as regions of bright contrast. Silica (SiO_2) shows a correlation with the calcium oxide (CaO) of the calcium ferrite phase, while a trace amount of magnesium oxide (MgO) was also detected. In the high MgO region, the main element is iron (Fe), and is predicted to be a magnesium ferrite phase. As the content of alumina (Al_2O_3) in the calcium ferrite increases, the content of iron oxides decreases.

Fig. 2 shows the results for sintered ore reduced at a high temperature of up to 1000 °C under the high H_2 blast furnace condition. Here, the formation of metallic iron (Fe) in the iron oxide particles can be seen, indicating that reduction of the iron oxides has proceeded.

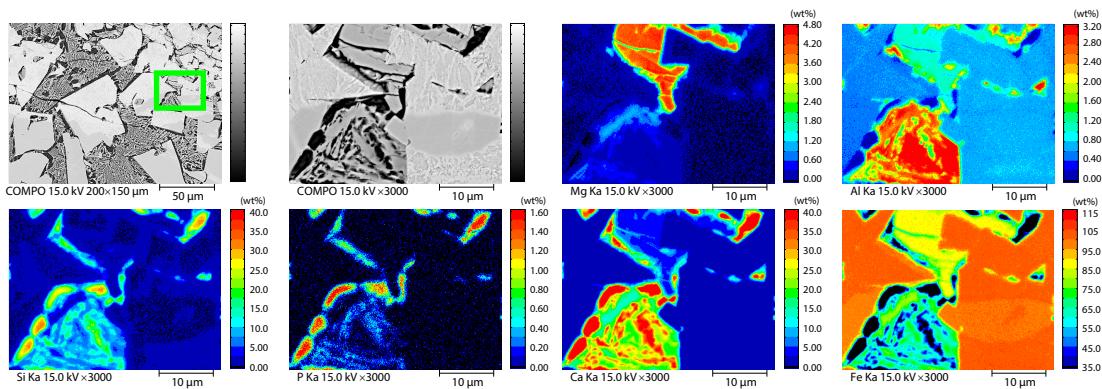


Fig. 1 Mapping of Sintered Ore after Reduction at 600 °C

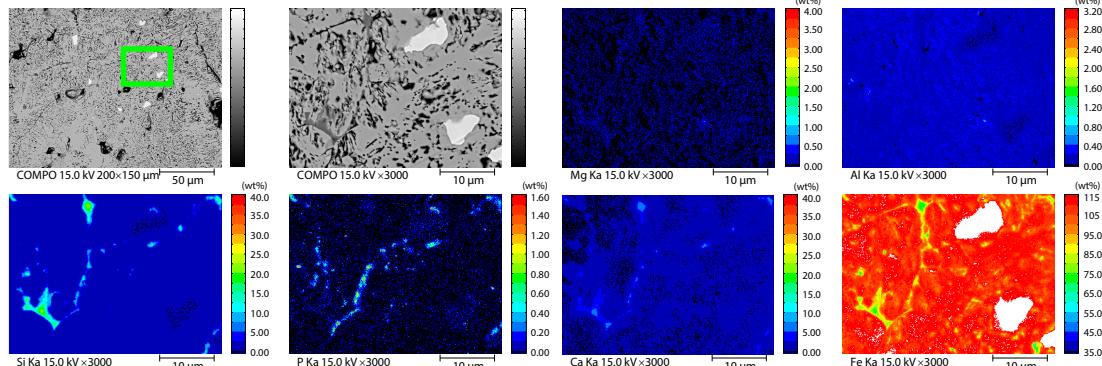


Fig. 2 Mapping of Sintered Ore after Reduction at 1000 °C

■ Phase Analysis of Sintered Ore after Hydrogen Reduction

To identify differences in the oxidation valence, the element distribution images in Fig. 3 show oxygen (O) and iron (Fe) by the mass percentage concentration (wt%) of the simple elements.

Fig. 4 (a) and (c) are Fe-O scatter diagrams showing the positions of the compounds by the theoretical concentration of iron oxide under low temperature and high temperature reduction, respectively. In Fig. 4 (a), the symbols and represent hematite (Fe_2O_3) and magnetite (Fe_3O_4), respectively, while in Fig. 4 (c), clusters (point-sets) can be seen in regions showing wustite (FeO) and compounds of iron (Fe). Fig. 4 (b) and (d) are phase diagrams in which filters were set by the Fe-O scatter diagrams (see Related Applications 3). In the phase diagrams, the purple regions are hematite, red regions are magnetite, green regions are wustite, dark blue regions are iron, yellow regions are magnesia ferrite, blue regions are calcium ferrite, and yellow-green regions are slag. The sintered ore contains hematite and magnetite before reduction, but in the reduction reactions at the different furnace temperatures, the species of iron oxides are different depending on the furnace temperature. From the element distribution images and phase diagrams, it can be understood that metallic iron (Fe) has formed in the sintered ore subjected to hydrogen reduction at the high temperature of 1000 °C. The light blue region in Fig. 4 (d) is considered to be slag.

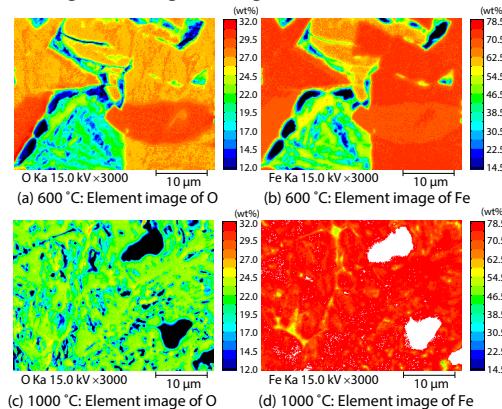


Fig. 3 Mapping of O and Fe of Sintered Ore after Reduction

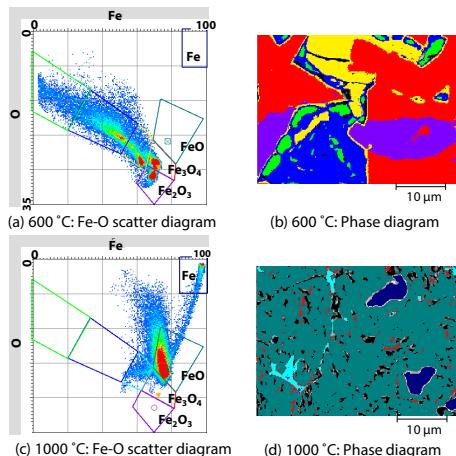


Fig. 4 Phase Analysis of Sintered Ore after Reduction

■ State Analysis of Iron Oxides in Sintered Ore after Hydrogen Reduction

In the case of iron, it is known that state analysis of iron oxides from the wavelength shift, waveform, and other features is possible by using the Fe-L line spectrum.

EPMA is a trademark of Shimadzu Corporation or its affiliated companies in Japan and/or other countries.

Shimadzu Corporation

www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. See <https://www.shimadzu.com/about/trademarks/index.html> for details.

Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "®".

Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

Here, Fig. 5 (a) and (c) show the Fe-L line spectra of standard samples of iron oxides and the sintered ore structure normalized by the spectral intensity of Fe-La, and Fig. 5 (b) and (d) show the analysis lines by the midpoint method in the apex region of the F-La peaks.

At 600 °C, the hematite structure (s.he) is in good agreement with the wavelength of Fe_2O_3 , and the magnetite structure (s.mg) is in good agreement with the wavelength of Fe_3O_4 . Furthermore, since the calcium ferrite structure (s.ca1) displays a peak wavelength between the wavelengths of Fe_2O_3 and Fe_3O_4 , the oxidation state is considered to be an intermediate state between Fe_2O_3 and Fe_3O_4 . On the other hand, a different calcium ferrite structure (s.ca2) can also be observed, and is almost in agreement with the wavelength of Fe_3O_4 . Its valence ratio of $Fe^{2+} : Fe^{3+}$ is considered to be (1 : 2).

At 1000 °C, the wustite structure (s.wu) is in agreement with the wavelength of FeO , while the s.st structure is consistent with the wavelength of Fe, indicating completely reduced iron. Thus, although the structure of the sintered ore contains hematite and magnetite before reduction, reduction does not proceed at the low temperature of 600 °C, whereas reduction proceeds at the high temperature of 1000 °C, and the formation of wustite and metallic iron (Fe) can be confirmed from the spectra.

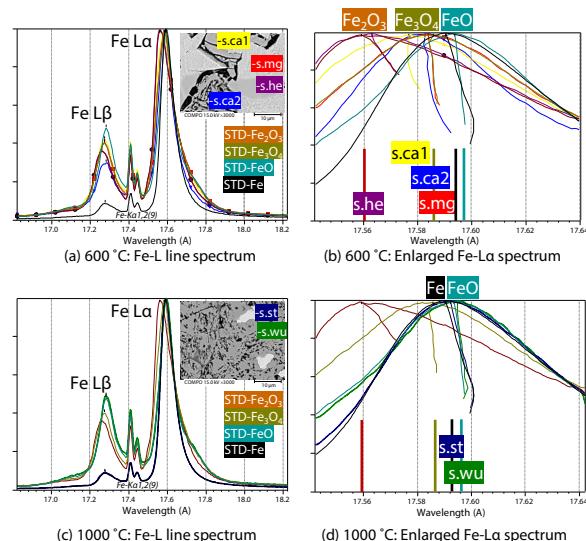


Fig. 5 State Analysis of Fe in Sintered Ore after Reduction

■ Conclusion

Quantitative mapping analysis and phase analysis of sintered ores after hydrogen reduction can be used not only in identification of iron oxide species and calcium ferrite, but also in structural analysis and research and development of the reduction process by utilizing state analysis from the detailed spectra of micro-regions.

<Acknowledgement>

The authors wish to express their heartfelt gratitude to Prof. Taichi Murakami of Tohoku University Graduate School of Environmental Studies (GSES) for his generous cooperation in providing the samples and instructions regarding the data analysis in the preparation of this Application News article.

<Related Applications>

1. Analysis of Sintered Ore for Steel Making, [Application News No.01-00584-EN](https://www.shimadzu.com/an/00584-en)
2. State Analysis of Iron Oxides in Sintered Ore for Steel Making, [Application News No.01-00663-EN](https://www.shimadzu.com/an/00663-en)
3. Analysis of Sintered Ore for Steel Manufacturing after Hydrogen Reduction, [Application News No.01-00843-EN](https://www.shimadzu.com/an/00843-en)

➤ Please fill out the survey

Related Products

Some products may be updated to newer models.

➤ EPMA-8050G

Electron Probe Microanalyzer

Related Solutions

➤ Engineering Materials

➤ Metal

➤ Environment

➤ Greenhouse Gas & CCUS

➤ Price Inquiry

➤ Product Inquiry

➤ Technical Service / Support Inquiry

➤ Other Inquiry