

Application News

Energy Dispersive X-ray Fluorescence Spectrometer ALTRACE™

Quantitative Analysis of Lead (Pb) and Arsenic (As) in Cosmetic Raw Material Powders

Yu Kubota¹, Ryoto Miyoshi², Shinji Watanabe¹, Hirokazu Moriya¹

¹ Shimadzu Corporation, ² Osaka Metropolitan University

User Benefits

- With simple sample preparation, lead and arsenic in cosmetic raw material powder can be quantified simultaneously.
- Increased X-ray tube output and optimized optical design have improved sensitivity for heavy elements.
- Continuous analysis of up to 48 samples is possible, improving analysis throughput.

■ Introduction

The management of lead and arsenic contained in cosmetics raw materials is important for protecting people's health. Although colorimetric methods have been used for these analyses, there is a growing need for trace control due to tighter regulations in recent years, leading to a consideration of a shift to instrumental methods that enable quantification. Candidates for instrumental methods include ICP optical emission spectrometry/mass spectrometry and X-ray fluorescence spectrometry. While the former method is highly sensitive, powder and solid samples need to be dissolved in an acid such as nitric acid or hydrochloric acid. In contrast, X-ray fluorescence analysis is convenient because it can be analyzed without dissolving the sample.

This application news introduces the analysis of two inorganic oxide powders (talc and titanium oxide) using the energy-dispersive X-ray fluorescence Spectrometer ALTRACE (Fig. 1).

Fig. 1 ALTRACE™

■ Calibration Curve

Two types of powders, talc ($Mg_3Si_4O_{10}(OH)_2$) and titanium oxide (TiO_2), were prepared by adding and homogenizing lead (Pb) and arsenic (As) standard solutions for ICP at three levels (Table 1). The sample volume was 2 g per sample. Using these calibration curve samples, calibration curves for Pb and As were prepared for each of the two types of powders. Fig. 2 shows the calibration curves, Table 2 shows the accuracy and correlation coefficient of the calibration curves, and Fig. 3 shows the profiles. For As, overlap correction with Pb (coexisting element correction dj method) was applied.

Table 1 Calibration Curve Samples [ppm]

Sample	As	Pb
Blank	0	0
STD1	2	20
STD2	5	10
STD3	10	5

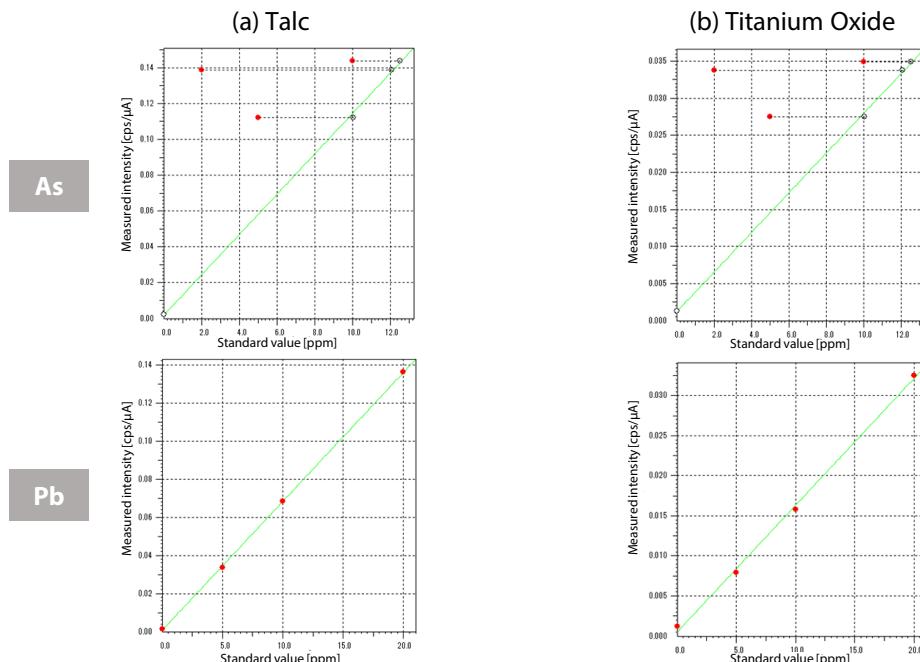
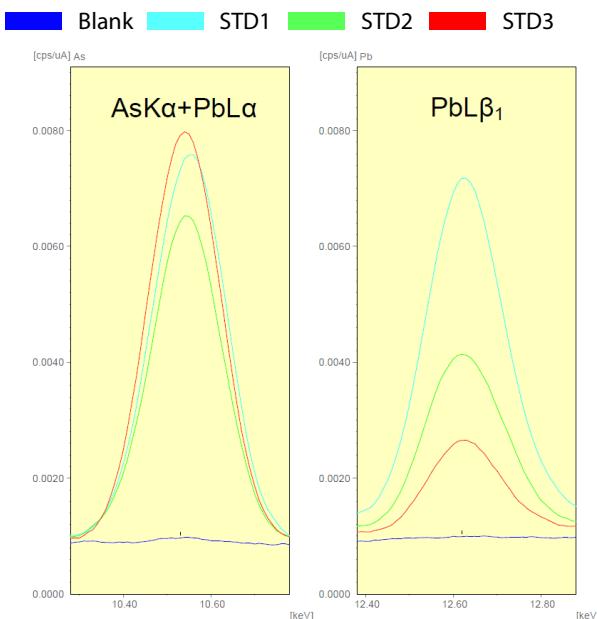



Fig. 2 Calibration Curves (a) Talc, (b) Titanium Oxide

Table 2 Accuracy [ppm] and Correlation Coefficients of the Calibration Curves

Sample	As		Pb	
	Acc.	Corr. Coef.	Acc.	Corr. Coef.
Talc	0.15	0.9997	0.15	0.9999
Titanium oxide	0.14	0.9997	0.40	0.9989

(a) Talc

(b) Titanium Oxide

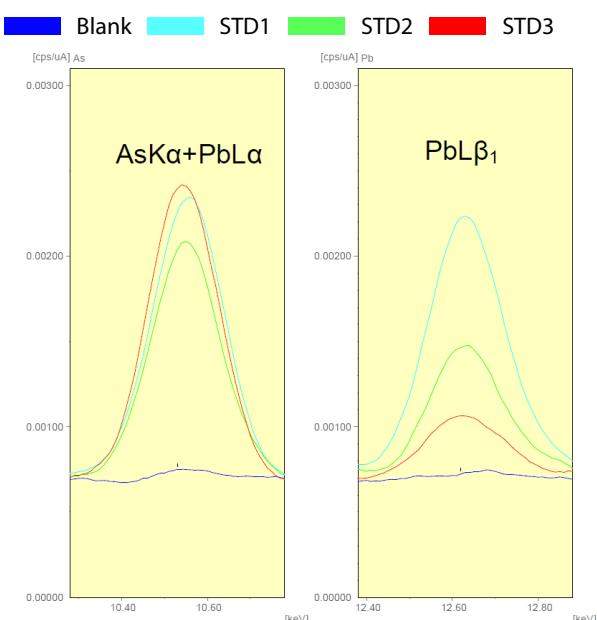
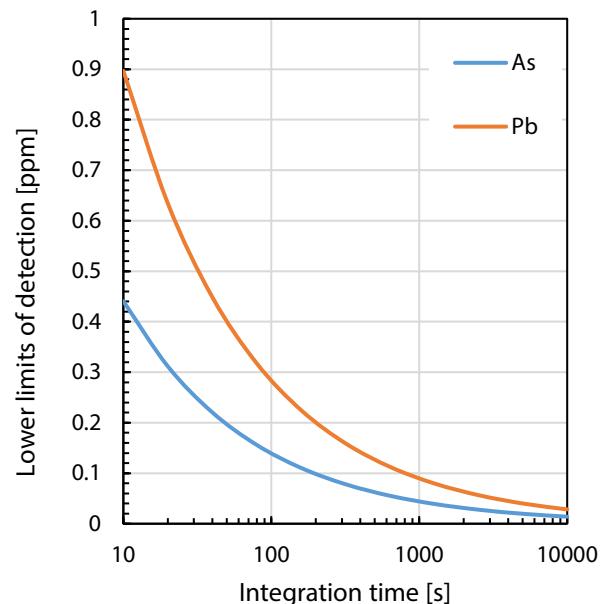


Fig. 3 The Profiles of the Calibration Curve Samples (As, Pb)
(a) Talc, (b) Titanium Oxide

■ Lower Limit of Detection


Table 3 shows the lower limits of detection calculated from the calibration curve. The integration time was set to 100 seconds for talc and 300 seconds for titanium oxide.

The lower limits of detection depend on the material, measured element, integration time, and other factors (Fig. 4). If the material is the same, the detection limit theoretically becomes $1/\sqrt{N}$ times when the integration time is multiplied by N. The integration time is set according to the required detection limit.

Table 3 The Lower Limits of Detection (LLD) [ppm]

Sample	Element	Analysis line	LLD
Talc (100 s)	As	As Ka	0.14
	Pb	Pb L β_1	0.28
Titanium oxide (300 s)	As	As Ka	0.30
	Pb	Pb L β_1	0.59

(a) Talc

(b) Titanium Oxide

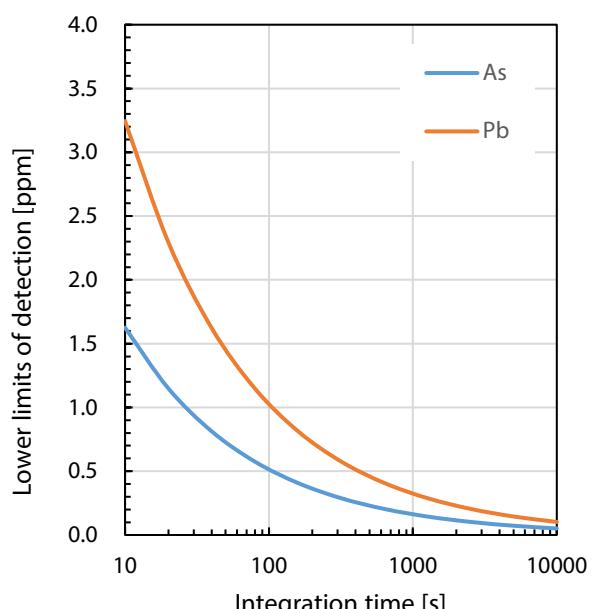


Fig. 4 Relationship between Integration Time and Lower Limits of Detection
(a) Talc, (b) Titanium Oxide

■ Test Samples

- (1) Water-soluble titanium oxide
- (2) Oil-soluble titanium oxide
- (3) Water-soluble fine-particle titanium oxide
- (4) Oil-soluble fine-particle titanium oxide

■ Sample Preparation

Two grams of the sample was put into a sample container covered with a 5 μm polypropylene film and simply compressed. Fig. 5 shows the sample image of (3) water-soluble fine-particle titanium oxide.

Fig. 5 (3) Water-Soluble Fine-Particle Titanium Oxide

■ Results of Quantitative Analysis

Table 4 shows the results of quantitative analysis. It is shown that this method can be used for the quantitative analysis of Pb and As in the raw powder of talc and titanium oxide.

Table 4 Results of Quantitative Analysis*1 [ppm]

Sample	As	Pb
(1) Water-soluble titanium oxide	3.1	32.7
(2) Oil-soluble titanium oxide	3.2	5.1
(3) Water-soluble fine-particle titanium oxide	<0.5	5.6
(4) Oil-soluble fine-particle titanium oxide	<0.6	7.5

*1 "<" is less than the lower limits of detection (theoretical 3 σ)

■ Profile

Fig. 6 shows the As and Pb profiles of the (1) water-soluble titanium oxide.

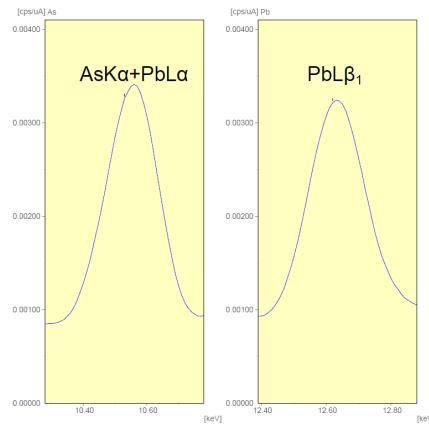


Fig. 6 The As and Pb Profiles of the (1) Water-Soluble Titanium Oxide

ALTRACE is a trademark of Shimadzu Corporation or its affiliated companies in Japan and/or other countries.

Shimadzu Corporation

www.shimadzu.com/an/

For Research Use Only. Not for use in diagnostic procedures.

This publication may contain references to products that are not available in your country. Please contact us to check the availability of these products in your country.

The content of this publication shall not be reproduced, altered or sold for any commercial purpose without the written approval of Shimadzu. See <https://www.shimadzu.com/about/trademarks/index.html> for details.

Third party trademarks and trade names may be used in this publication to refer to either the entities or their products/services, whether or not they are used with trademark symbol "TM" or "®".

Shimadzu disclaims any proprietary interest in trademarks and trade names other than its own.

The information contained herein is provided to you "as is" without warranty of any kind including without limitation warranties as to its accuracy or completeness. Shimadzu does not assume any responsibility or liability for any damage, whether direct or indirect, relating to the use of this publication. This publication is based upon the information available to Shimadzu on or before the date of publication, and subject to change without notice.

■ Results of Repeatability Test

Table 5 shows the results of simple 10 times repeatability test for (1) water-soluble titanium oxide.

Table 5 Results of Repeatability Test

Element	As	Pb
Mean value [ppm]	3.2	32.9
Standard deviation [ppm]	0.2	0.4
Coefficient of variation [%]	6.9	1.2

■ Conclusion

This application news reports on the quantitative analysis of lead (Pb) and arsenic (As) in two types of inorganic oxide powders: talc and titanium oxide. The analysis was performed using the energy-dispersive X-ray fluorescence spectrometer ALTRACE, which allows for the analysis of powders without dissolving them.

ALTRACE enables simultaneous analysis of Pb and As, unlike traditional colorimetric methods that test them separately. Additionally, ALTRACE can analyze 48 samples continuously, significantly improving the efficiency of the testing process.

■ Analysis Conditions

Table 6 Analysis Conditions

Instrument	:	ALTRACE
Elements	:	As (AsKa), Pb (PbL β_1)
Analysis group	:	Quantitative analysis
Analysis method	:	Calibration curve method
Detector	:	SDD
X-ray tube	:	Rh target
Tube voltage	:	50 [kV]
Tube current	:	Auto [μA]
Primary filter	:	#5
Atmosphere	:	Air
Integration time*1	:	Talc : 100 [s] Titanium oxide : 300 [s]
Dead time	:	Max. 40 [%]

*1 Since As and Pb are measured simultaneously, the integration time is the time per sample.

<Related Applications>

1. [01-00775-EN](#) : Screening Analysis for Hazardous Heavy Metals in Foods and Food Additives

› Please fill out the survey

Related Products

Some products may be updated to newer models.

› ALTRACE

Energy Dispersive X-ray Fluorescence
Spectrometer

Related Solutions

Cosmetics &

› Personal Care Products

› Safe and Secure

› Price Inquiry

› Product Inquiry

› Technical Service / Support Inquiry

› Other Inquiry