Bulletin 824C

Resolving Industrial Solvent Mixtures on Packed and Capillary GC Columns

Nonpolar SPB-1 and polar SUPELCOWAX 10 capillary columns separate complex mixtures of most commonly used solvents with good resolution. Resolution on 0.53mm ID columns is similar to that on 0.25mm ID or 0.32mm ID columns, but 0.53mm ID columns accept up to 2000ng of each analyte, compared to about 500ng for 0.32mm ID columns. Thus, these columns are useful for analyses of samples containing both concentrated and dilute components. Alternatively, packed GC columns offer various combinations of selectivity and capacity. 80/120 Carbopack B/3% SP-1500 and 60/80 Carbopack B/1% SP-1510, respectively, separate 27 and 22 of 32 widely used solvents.

Key Words

- solvents industrial solvents water pollutants
- priority pollutants
 alcohols
 ketones
 esters
- aromatics chlorinated hydrocarbons

Introduction

Because many different solvents are used in industrial processes, there are many different situations requiring GC analysis. The appropriate column must be chosen from among nonpolar and polar capillary columns, or from several packed columns. The advantages of specific columns are described here.

Solvent Analyses On Capillary Columns

Both nonpolar SPBTM-1 (bonded SE-30) and polar SUPELCOWAXTM 10 (bonded CARBOWAX[®] PEG 20M) capillary columns resolve most commonly used solvents, but with somewhat different selectivity. To determine which phase is appropriate for your sample, compare the performance of these columns with the same solvent mixture (Figure A).

Figure A also shows that complex solvent mixtures can be resolved on a 0.53mm capillary column, as well as on a 0.25mm or 0.32mm ID column. Sample resolution is almost the same, as a comparison

Figure A. SUPELCOWAX 10 and SPB-1 Capillary Columns Provide Alternative Selectivities for Solvents

Figure B. Common Solvents on an SPB-1 Column

of the chromatogram for the SPB-1 column in Figure A and the similar mixture in Figure B will reveal, but sample capacity for a 0.53mm ID column is far greater than for a narrow bore column – 2000ng per analyte, versus 500ng for a 0.32mm ID column (or 20,000ng per component for a packed column). Consequently, a 0.53mm ID column will resolve solvent mixtures with both concentrated and dilute components, such as a primary solvent containing trace contaminants. When you dilute such a sample to avoid overloading a 0.25mm or 0.32mm column with the concentrated component, the trace components can be difficult to detect or quantify. The large capacity of a 0.53mm ID column eliminates the need to dilute concentrated components. Furthermore, concentrated solvents will not damage the SPB-1 or SUPELCOWAX 10 bonded phase – you can introduce samples onto the column by split, splitless, or on-column injection.

A 0.53mm ID capillary column can be installed in instruments designed for packed columns and used with packed column injection and detection devices, as easily as a packed column. They will accept high carrier gas flow rates without significant loss of sample resolution (Figure C). When used with packed column flow rates, a 0.53mm column's efficiency is about equal to that of a

Ó

packed column. An analysis comparable to that from the packed column, however, requires significantly less time. When maximum efficiency is needed, the flow rate must be reduced toward the ideal rate of 2.5mL/minute (helium), and make-up gas must be supplied to the detector. Our injector and detector conversion kits enable you to convert a packed column system to accept 0.53mm ID capillary columns simply, inexpensively, and reversibly. For more about how to incorporate wide bore capillary columns into a packed column system, refer to our catalog.

Solvent Analyses on Packed Columns

Many industrial solvents can be separated on either 80/120 Carbopack™ B/3% SP-1500 or 60/80 Carbopack B/1% SP™-1510 packing. Although both of these packings resolve complex mixtures well, the Carbopack B/SP-1500 packing resolves more solvents from a single mixture. Under appropriate conditions, this packing separates 27 of 32 widely used solvents (Figure D). Minimal peak tailing by the low molecular weight alcohols confirms that the packing is chemically inert. The narrow, symmetrical, late eluting peaks (e.g., ethylbenzene) indicate good column

Column: SUPELCOWAX 10, 30m x 0.53mm ID, 1.0um film

Figure C. A 0.53mm ID Capillary Column Can Be Used at Relatively High Flow Rates

	Cat. No.: 25301-U Oven: 40°C (5 min) to 200°C at 5°C/mi	n
	Carrier: helium, 5mL/min	
	Inj.: 1µL mixed solvents, split (50:1),	, 250°C
	1. Hexane 26. 1,2 2. 1,1-Dichloroethylene 27. n-1 3. Acetone 28. 2-1 4. Methylacetate 29. Iso 5. trans-1,2-Dichloroethylene 30. Iso 6. Tetrashydrofuran 31. p-2 7. Carbon tetrachloroethane 33. 1-E 9. 1,1-Dichloroethane 34. Me 10. Ethylacetate 35. Am 11. Methanol 36. o-2 12. Isopropanolacetate 37. Iso 13. Methylene chloride 40. St 16. Benzene 41. Cy 17. Propylacetate 42. N,1 18. Trichloroethylene 43. Cy 19. Methylenothloride 40. St 10. Ethylene chloride 40. St 13. Methylenothloride 40. St 16. Benzene 41. Cy 17. Propylacetate 42. N,1 18. Trichloroethylene 43. Cy 20. Isobutyl ketone 44. Bu 20. Isobutylacetate 45. 2-1 21. Chloroform 46. 1,2 22. Tetrachloroethylene 47. 1,1 23. 2-Butanol	2-Dichloroethane Butylacetate Hexanone (MBK) ibutanol aamylacetate Xylene Butanol Butanol Butanol Butylacetate Xylene Butanol Butylacetate Xylene Butylacetate Xylene Butylacetate Xylene Butylacetate Xylene Butylacetate Sylene Butylacetate Sylene Butylacetate Sylene Butylacetate Sylene Butylacetate Sylene Butylacetate Sylene Butylacetate Sylene Butylacetate Sylene Butylacetate Sylene Butylacetate Sylene Butylacetate Sylene Butylacetate Sylene Butylacetate Sylene Sylene Butylacetate Sylene Sylene Butylacetate Sylene Butylacetate Sylene Sylene Butylacetate Sylene Sylene Butylacetate Sylene Syl
7,8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48 49 50 1 35 713-079

efficiency. At k = 12 (methyl ethyl ketone), the efficiency of a Carbopack B/3% SP-1500 column is 600-700 theoretical plates per foot.

A column that resolves the compounds in Figure D can be very useful to solvent analysts. For example, Cellosolves[®] are widely used as water-soluble solvents and as nonchlorinated replacements for chlorinated solvents, but these compounds are not resolved on all columns used for solvent analyses. A Carbopack B/ 3% SP-1500 column separates Cellosolves from each other and from the other components of the complex test mixture. Similarly, this column resolves o-, m-, and p-xylene which, like the Cellosolves, do not separate on most general purpose solvent columns.

A Carbopack B/3% SP-1500 column also separates solvents well under conditions that minimize analysis time. In Figure D, 27 of 32 solvents were resolved in 44 minutes by temperature programming the column at 4°C/minute. When the temperature programming rate was increased to 8°C/minute, analysis time was reduced to 25 minutes and 24 of 32 solvents were resolved (Table 1). Thus, you can reduce solvent analysis time significantly with only a slight sacrifice in separation.

A Carbopack B/3% SP-1500 column separates many compounds not shown in Figure D. A number of chlorinated compounds, and other materials, are no longer used as solvents, but still must be monitored by industrial hygienists. Some of these compounds, and their retention times, are listed in Table 1. This packing also is useful for analyzing volatile priority pollutants in wastewater (Table 1). The elution order for these pollutants on Carbopack B/3% SP-1500 differs from that on 60/80 Carbopack B/1% SP-1000, the primary column used for this analysis (1). By using a Carbopack B/ 3% SP-1500 column as a backup, you can quantify cis-1,3dichloropropene, tetrachloroethylene, and tetrachloroethane. These pollutants are not isolated on the SP-1500 packing, when compared to the SP-1000 packing, but they coelute with different compounds.

The other Carbopack B packing, 60/80 Carbopack B/1% SP-1510, separates 22 of the 32 solvents in the test mixture (Figure E). Peaks are nearly symmetrical, even for the xylenes and other late-eluting compounds. At k = 15 (methyl ethyl ketone) column efficiency is 500-600 theoretical plates per foot. Separation on Carbopack B/1% SP-1510 is not quite as good as on Carbopack B/3% SP-1500, but the two packings differ in selectivity. Consequently, you can use a Carbopack B/1% SP-1510 column to resolve solvents not separated on Carbopack B/3% SP-1500, or to confirm results obtained on the latter column.

Either Carbopack B packing offers distinct advantages when compared to other packings used for general solvents analyses. For example, solvent resolution is better on Carbopack B/3% SP-1500 (Figure D) than on a widely used packing, Carbopack C/0.1% SP-1000 (Figure F). Overall, solvent resolution is comparable for Carbopack B/1% SP-1510 (Figure E) and the Carbopack C packing (Figure F). Both Carbopack B packings have more than twice the sample capacity of the Carbopack C material: a 10' x 1/8" column of either Carbopack B packing can accept up to 65µg of each sample component, but a comparable column of the Carbopack C packing can accept only 30µg of each component (Figure G).*

SUPELCO Bulletin 824

Table 1. 80/120 Carbopack B/3% SP-1500 Column Monitors Many Solvents and Pollutants

Industrial Solvents

Solvent	4°C/min temp. rise	t _R (min) 8°C/min temp. rise
Methanol	2.7	1.8
Methyl formate	4.2	2.7
Ethanol	5.1	2.9
Acetone	7.3	4.1
Methylene chloride	7.6	4.3
Isopropyl alcohol	8.6	4.6
Ethyl formate	9.3	5.0
Methyl acetate	9.3	5.0
n-Propyl alcohol	10.5	5.4
Tetrahydrofuran (THF)	13.5	7.1
Methyl ethyl ketone (MEK)	14.2	7.4
Methyl Cellosolve	15.4	7.8
sec-Butyl alcohol	15.8	8.0
Ethyl acetate	16.2	8.2
Isobutyl alcohol	16.6	8.3
2-Nitropropane	18.3	9.3
n-Butyl alcohol	18.6	9.8
Ethyl Cellosolve	21.9	11.0
n-Propyl acetate	24.2	12.2
sec-Butyl acetate	28.9	14.6
Cyclohexanone	29.9	15.4
Isobutyl acetate	30.6	15.4
n-Butyl acetate	32.2	16.2
Toluene	32.2	16.3
Mesityl oxide	32.2	16.3
Cellosolve acetate	36.4	18.6
Butyl Cellosolve	37.1	19.1
Isoamyl acetate	37.8	19.5
Ethylbenzene	38.5	20.1
m-Xylene	41.7	22.5
p-Xylene	42.8	23.5
o-Xylene	43.3	24.0

Volatile Wastewater Pollutants

Pollutant	t _R (r 4°C/ temp	nin) min rise	Solvent	t _R (min) 4°Cmin temp. rise
Bromochlorometh trans-1,2-Dichloro 1,1-Dichloroethan 3,2-Dichloroethan Bromodichlorome 1,2-Dichloropropa trans-1,3-Dichloropr Chlorodibromome cis-1,3-Dichloropr Trichloroethylene 1-Chloro-2-bromo Bromoform 1,1,2,2-Tetrachlor 1,4-Dichlorobutan 1,1,2,2,-Tetrachlor	ane ethylene e thane ne propene thane opene propane oethylene e roethane	12.2 13.1 13.1 16.0 20.4 22.4 22.4 22.4 24.3 25.7 27.5 31.2 33.0 34.4 36.2	Chloroform Pentane 1,1,1-Trichloroethane 1,4-Dioxane Carbon tetrachloride Isopropyl acetate Benzene Hexane 1,1,2-Trichloroethane Methyl isobutyl ketone (MIBK) Methyl isoamyl ketone (MIAK)	14.6 15.2 18.3 18.6 19.9 21.4 21.8 23.9 24.4 28.3 36.4
Packing: Cat. No.: Column: Oven: Carrier: Det.: Inj.:	80/120 Cart 11813 (15g 10' x 1/8" S 70°C to 2355 nitrogen, 20 FID 0.3µL (indu: 0.1µL (wast approximate	bottle) S °C at 4° mL/min strial an ewater p	B/3% SP-1500 C/min or 8°C/min d hazardous solvents) or pollutants),	ıts

Hazardous Solvents

^{*} Sample capacity was determined by progressively increasing the amount of a nonpolar test probe (4% pentane in methylene chloride) injected onto each column, and measuring peak asymmetry at 10% of peak height. The point at which peak asymmetry sharply increased was defined as the maximum sample capacity. Peaks with an asymmetry range of 0.90-1.10 were considered symmetrical.

Solvents in Figures D-F

1.	Methanol	12.	Methyl Cellosolve	23.	n-Butylacetate
2.	Methylformate	13.	sec-Butyl alcohol	24.	Toluene
3.	Ethanol	14.	Ethylacetate	25.	Mesityl oxide
4.	Acetone	15.	Isobutyl alcohol	26.	Cellosolve acetate
5.	Methylene chloride	16.	2-Nitropropane	27.	Butyl Cellosolve
6.	Isopropyl alcohol	17.	n-Butyl alcohol	28.	Isoamyl acetate
7.	Ethylformate	18.	Ethyl Cellosolve	29.	Ethylbenzene
8.	Methylacetate	19.	n-Propylacetate	30.	m-Xylene
9.	n-Propylalcohol	20.	sec-Butyl acetate	31.	p-Xylene
10.	Tetrahydrofuran (THF)	21.	Cyclohexanone	32.	o-Xylene
11.	Methylethylketone (MEK)	22.	Isobutyl acetate		

Figure D. An 80/120 Carbopack B/3% SP-1500 Column Resolves Most Components of a 32 Solvent Mixture

Figure E. Selectivity for Solvents on Carbopack B/1% SP-1510 Differs from That for Carbopack B/3% SP-1500

Figure F. Industrial Solvents on a Carbopack C/0.1% SP-1000 Column

Figure G. Sample Capacity of Carbopack B Packings Is Twice That for Carbopack C

Despite the superiority of the Carbopack B packings, Carbopack C/ 0.1% SP-1000 is useful for separating complex mixtures of alcohols, ketones, esters, aromatics, and chlorinated hydrocarbons. Alcohol peaks do not tail. Depending on the separation needed, this packing can be used in place of the Carbopack B packings, or to confirm results obtained on them. Table 2 lists retention data for solvents on Carbopack C/0.1% SP-1000. This packing's capacity is less than the capacities of the Carbopack B packings (as discussed above), and sample volume should be restricted to 0.1-0.5µL.

SP-2100 methyl silicone is another useful phase for separating a variety of solvents, with elution order generally according to increasing boiling points. We suggest a mixed phase of 20% SP-2100 combined with 0.1% Carbowax[®] 1500 (to reduce tailing of alcohols) on 100/120 SUPELCOPORT[™] (Figure H, Table 2). The packing is perhaps most useful for separating complex mixtures of chlorinated solvents (Figure I), or for resolving impurities from a single chlorinated solvent.

Figure H. Solvents on a 20% SP-2100/0.1% Carbowax 1500 Column

Figure I. Chlorinated Solvents on a 20% SP-2100/0.1% Carbowax 1500 Column

Despite the inclusion of Carbowax 1500 in this packing, methanol and ethanol tail when present in low concentrations. SP-2100/ Carbowax 1500 columns also are poorly suited to separating mixtures of aliphatic solvents combined with alcohols, ketones, etc. The hydrocarbons tend to be eluted along with the other components, unless the aliphatics have either lower or higher boiling points. Furthermore, the Carbowax 1500 restricts the upper temperature limit of this packing to 175°C.

Special Purpose Packed Columns

Relative to other packings, 20% SP-2401/0.1% Carbowax 1500 on 100/120 SUPELCOPORT delays the elution of ketones. For example, methyl ethyl ketone is eluted after ethyl acetate, with good resolution (Figure J). In contrast, 20% SP-2100/0.1% Carbowax 1500 barely separates this pair (Figure H). Retention times for solvents on the SP-2401 packing at 100°C are given in Table 2. At higher temperatures, isophorone is eluted in a reasonable analysis time.

When used as a stationary phase, THEED (tetrahydroxyethylenediamine) retards elution of alcohols relative to other classes of compounds. It also allows hydrocarbons to elute rapidly, compared to other compounds with similar boiling points. Figure K shows the rapid elution of heptane and octane, esters, aromatics, and finally alcohols from 15% THEED on 100/120 Chromosorb[®] W AW. Retention data for other compounds are listed in Table 2. We do not recommend using a silanized support with THEED because it would be extremely difficult to coat with the THEED stationary phase.

Figure J. Solvents on a Ketone-Retarding Column

Table 2.	Retention Times for	Common	Solvents on	Packed	Column	Phases ((t _R in	min)
----------	---------------------	--------	-------------	--------	--------	----------	--------------------	------

-	Column								
8 Compound	0/100 Carbopack C/ 0.1% SP-1000	10% SP-1000	20% SP-2100/ 0.1% Carbowax 1500	20% SP-2401/ 0.1% Carbowax 1500	15% THEED				
Alcohols									
Methyl	0.6	4.0	1.1	1.1	3.0				
Ethyl	0.9	4.1	1.2	1.2	3.4				
Isopropyl	1.5	4.2	1.4	1.4	3.0				
n-Propyl	1.8	6.2	1.8	1.7	4.9				
Isobutyl	4.0	7.8	2.5	2.2	5.4				
n-Butyl	5.5	10.1	3.0	2.5	7.6				
Diacetone E	Decomposes	3.2	8.0	14.4	Not eluted				
Cellosolves									
Methyl	34	13.1	27	2.8	12 1				
Ethyl	8.6	15.8	4.0	3.8	12.3				
Butyl	Late	39.4	12.4	9.7	27.0				
Katanaa	2410								
Ketones	1.0	2.4	4.4	2.2	4 4				
Acetone	1.3	3.1	1.4	2.2	1.4				
	3.2	3.9	2.1	3.1	1.8				
	21.9	5.9	4.0	0.1	2.3				
DIBK Maaitul autida	Late	12.4	_						
Wesityi oxide	Late	10.8	0.4	7.6	4.1 Not olytod				
Cyclonexanone	_	—	11.1	18.3	Not eluted				
Isophorone	_	—	43.9		Not eluted				
Ethers									
Ethyl	2.7	2.0	—	—	—				
Dioxane	4.4	7.7	—	_	_				
Acetates									
Ethyl	4.5	3.5	2.2	2.5	1.3				
Isopropyl	9.0	3.6	3.0	3.0	1.3				
n-Propyl	Late	4.8	3.9	4.0	1.7				
Isobutyl	Late	57	5.4	5.5	1.8				
n-Butvl	Late	7.2	6.8	6.5	2.2				
Cellosolve	Late	21.7	11.1	12.0	6.5				
Formatas				-					
Mothyl	0.0	2.0	1.2	1.2					
Ethyl	0.9	2.9	1.2	1.0					
	1.0	5.5	1.0	1:0					
Chloroalkanes									
Carbon tetrachlor	ide 4.9	3.6	—	—	—				
1,1,1-Trichloroeth	ane 4.4	—	3.0	1.7	1.3				
Methylene chlorid	le 1.3	4.1	1.7	1.0	1.2				
Trichloroethylene	8.9	5.3	—	—	—				
Chloroform	2.8	5.7	—	—	—				
Tetrachloroethyle	ne Late	6.3	—	—	_				
1,2-Dichloroethar	ie 3.2	7.2	—	—	—				
1,2,2- I richloroeth	iane Late	17.8		_					
Aromatics									
Benzene	9.8	4.6	3.2	2.2	1.4				
Toluene	Late	6.9	5.8	3.5	1.9				
Ethylbenzene	Late	10.0	—	_	_				
m- & p-Xylene	Late	10.8	10.5	5.5	2.6				
o-Xylene	Late	13.3	12.1	6.6	3.3				
Styrene	Late	18.6	—	—	_				
Alinhatics									
n-Hevane	l ato	21	24	13	0.8				
n-Hentane	Late	2.1	4.0	1.0	0.0				
Isooctane	ate	2.4	4.0 —	— —	0.0				
n-Octane	Late	2.2	7 1	26					
n-Nonane		5.0	13.0	2.0	0.9				
n-Decane	Late	56	24.3	6.2	1.1				
		5.0	24.0	0.2	1.0				
Miscellaneous									
Carbon disulfide	2.6	2.5		—					
IHF	2.4	3.9	2.7	—	1.6				
2-Nitropropane	4.6	10.2	3.6	7.0	3.5				
DMF	8.1	33.5	5.4	—	_				

80/100 Carbopack C/0.1% SP-1000: 6' x 1/8" SS column, 20mL/min flow rate (nitrogen). 10% SP-1000 on 80/100 SUPELCOPORT: 20' x 1/8" SS column, 30mL/min flow rate. Other packings: 10' x 1/8" SS columns, 20mL/min flow rate. Oven (all columns): 100°C

Monitoring Water in Solvents on a Packed Column

Determining the amount of water in a sample by GC is difficult. With many columns, the water peak will tail severely. The degree of tailing is influenced by a variety of factors, including the nature of the column packing and the composition of the column tubing and of the instrument inlet. Diatomite supports cause tailing, even when acid washed and dimethylchlorosilane treated. However, water does not tail on porous polymers (e.g., Chromosorb 101) because these supports are polar in nature.

Water in solvents can be quantified rapidly with Chromosorb 101 packed in a short metal tube. The analysis of water in toluene in Figure L was performed on a GC equipped with a thermal conductivity detector. The Chromosorb 101 column also can be used to separate some solvent mixtures.

Metal column tubing has been blamed for water peak tailing, but this depends on both the quality of the tubing and the concentration of water in the sample. We have been able to detect as little as 0.01% water in solvents, using columns made with our chromatographic quality stainless steel tubing. Some analysts prefer using glass or Teflon[®] tubing to obtain a symmetric water peak. The overall efficiency of a glass column is higher than that of stainless steel, but efficiency of Teflon columns is poor.

A metal inlet in an instrument can be highly adsorptive and thus cause tailing. Avoid this by using a PureCol[™] glass insert in the inlet or by injecting the sample directly onto the column.

A calibration curve for water can be obtained by injecting onto the column equal volumes of several water standards. Plot peak height versus water concentration (Figure M). The calibration mixtures should be prepared from a water-free solvent and dried with a good drying agent, such as Molecular Sieve 5A. The syringe used to inject the sample also should be water-free. For details on an internal standard procedure for water, see Hogan, *et al.* (2). References 3-5 also deal with determining water in samples.

Figure K. Solvents on an Alcohol-Retarding Column

Figure L. Trace Water in Toluene

Figure M. Peak Height vs. Concentration of Water in a Solvent

References

- 1. Federal Register, 44, No. 233, Dec. 3 (1979).
- 2. Hogan, J.M., R.A. Engel, and H.F. Stevenson, Anal. Chem., 42, 249 (1970).
- 3. Bennett, O.F., Anal. Chem., 36, 684 (1964).
- Gvozdovich, T.N., G.S. Grinberg, L.V. Zuyeva, and Y.I. Yashin, *Petroleum Chemistry* (USSR), 12, No. 2, 120 (1972) English.
- 5. Hollis, O.L. and W.W. Haye, J. Gas Chromatogr., 4, 235 (1966).

References not available from Supelco.

Ordering Information:

Stock Packed Stainless Steel Columns for Solvents Analyses

General Config. (bend to fit most GCs)	Hewlett- Packard 5700, 5992-3 GC-MS (config. 5)	Hewlett- Packard 5880, 5890 5987, 6890 (config. A)	Perkin-Elmer 900, 3920 Sigma 1,2,3 (not on-column injection)	Perkin-Elmer 8300, 8400, 8500 8600, 8700, Auto System (not on-column injection)	Varian 3700 Vista series (FID)	Varian 3300/3400 Vista series (FID)
3% SP-1500 on	80/120 Carbopack B	(Cat. No. 1-1813), 10)' x 1/8" column			
12592	12593	12594	12595-U	13734-U	12596	13735-U
0.1% SP-1000 o	n 80/100 Carbopack	C (Cat. No. 1-1820),	6' x 1/8" column			
12495-U	12499	12500-U	12496	13736-U	12497	13737
10% SP-1000 or	n 80/100 SUPELCOP	ORT (Cat. No. 1-187	2), 10' x 1/8" column			
12537	12541	13752-U	12538	13753	12539	13754
20% SP-2100/0.	1% Carbowax 1500 c	on 100/120 SUPELCO	OPORT (Cat. No. 1-182	1), 10' x 1/8" column		
12718-U	12740-U	12804-U	12751	13773	12773	13774

Stock Packings for Solvents Analyses

Description	Cat. No.
80/120 Carbopack B/3% SP-1500, 15g	11813-U
60/80 Carbopack B/1% SP-1510, 15g	11809
80/100 Carbopack C/0.1% SP-1000, 15g	11820
GP 20% SP-2100/0.1% Carbowax 1500	
on 100/120 SUPELCOPORT, 20g	11821
GP 20% SP-2401/0.1% Carbowax 1500	
on 100/120 SUPELCOPORT, 20g	11822
15% THEED on 100/120	
Chromosorb W AW, 20g	11823
10% SP-1000 on 80/100 SUPELCOPORT, 20g	11872
Chromosorb 101	
60/80, 50g	20213
80/100, 50g	20214
100/120, 50g	20215

GP – Indicates packing has been tested for specific analysis shown in this bulletin.

Nukol[™] capillary columns provide symmetrical peaks and good resolution for glycols analyses. For information about these columns, please see our catalog.

Capillary Columns

Description	Cat. No.
SPB-1	
30m x 0.25mm ID, 0.25µm film	24028-U
60m x 0.25mm ID, 0.25µm film	24030-U
30m x 0.32mm ID, 0.25µm film	24044
30m x 0.32mm ID, 1.0μm film	24045-U
60m x 0.32mm ID, 0.25µm film	24046
15m x 0.53mm ID, 1.5µm film	25302-U
30m x 0.53mm ID, 1.5µm film	25303
30m x 0.53mm ID, 5.0µm film	25345-U
60m x 0.53mm ID, 5.0µm film	25349
SUPELCOWAX 10	
30m x 0.25mm ID, 0.25µm film	24079
60m x 0.25mm ID, 0.25µm film	24081
30m x 0.32mm ID, 0.25µm film	24080-U
60m x 0.32mm ID, 0.25µm film	24082
15m x 0.53mm ID, 1.0μm film	25300-U
30m x 0.53mm ID, 1.0µm film	25301-U
60m x 0.53mm ID, 2.0µm film	25376

For other column lengths and film thicknesses, see our catalog.

Trademarks

Carbopack, Nukol, PureCol, SP, SPB, SUPELCO, SUPELCOPORT, SUPELCOWAX – Sigma-Aldrich Co.

CARBOWAX, Cellosolve – Union Carbide Corp.

Chromosorb – Manville Corp.

Teflon – E.I. du Pont de Nemours & Co., Inc.

Fused silica columns manufactured under HP US Pat. No. 4,293,415.

80/120 Carbopack B/3% SP-1500 was developed in cooperation with Dr. A. DiCorcia of the University of Rome.

BULLETIN 824

For more information, or current prices, contact your nearest Supelco subsidiary listed below. To obtain further contact information, visit our website (www.sigma-aldrich.com), see the Supelco catalog, or contact Supelco, Bellefonte, PA 16823-0048 USA.

Supeloo, Bellefonte, PA 16823-0048 USA. ARGENTINA - Sigma-Aldrich de Argentina, S.A. - Buenos Aires 1119 AUSTRALIA - Sigma-Aldrich Pty. Ltd. - Castle Hill NSW 2154 AUSTRIA - Sigma-Aldrich Handels GmbH - A-1110 Wien BELGIUM - Sigma-Aldrich N.V./S.A. - B-2880 Bomem BRAZIL - Sigma-Aldrich Quimica Brasil Ltda. - 01239-010 São Paulo, SP CANADA - Sigma-Aldrich Canada, Ltd. - 2149 Winston Park Dr., Oakville, ON L6H 6J8 CZECH REPUBLIC - Sigma-Aldrich S.r.o. - 186 00 Praha 8 DENMARK - Sigma-Aldrich Denmark A/S - DK - 2665 Vallensbæk Strand FINLAND - Sigma-Aldrich Finland/YA-Kernia Oy - FIN-00700 Helsinki FRANCE - Sigma-Aldrich Chimie - 38297 Saint-Quentin-Fallavier Cedex GERMANY - Sigma-Aldrich Chemie GmbH - D-82041 Deisenhofen GREECE - Sigma-Aldrich (...) Ltd. - Lioupoli 16346, Athens HUNGARY - Sigma-Aldrich s.r.l. - 20151 Milano JAPAN - Sigma-Aldrich Japan K.K. - Chuo-ku, Tokyo 103 KOREA - Sigma-Aldrich Ireland Ltd. - Dublin 24 ISRAEL - Sigma-Aldrich (M) Sdn. Bhd. - Selangor MEXICO - Sigma-Aldrich S.r.l. - 20151 Milano JAPAN - Sigma-Aldrich Japan K.K. - Chuo-ku, Tokyo 103 KOREA - Sigma-Aldrich Korea - Seoul MALAYSIA - Sigma-Aldrich (M) Sdn. Bhd. - Selangor MEXICO - Sigma-Aldrich Sp. z o.o. - 61-663 Poznañ PORTUGAL Sigma-Aldrich Quimica, S.A. - 28100 Alcobendas, Madrid SWEDEN - Sigma-Aldrich Norway - Torshov - N-0401 Oslo POLAND - Sigma-Aldrich (pty) Ltd. - Jet Park 1459 SPAIN - Sigma-Aldrich Quimica, S.A. - 28100 Alcobendas, Madrid SWEDEN - Sigma-Aldrich Sweden AB + 135 70 Stockholm SWITZERLAND - Supelco - CH-9471 Buchs UNITED KINGDOM - Sigma-Aldrich Company Ltd. - Poole, Dorset BH12 4QH UNITED STATES - Supelco - Supelco Park - Bellefonte, PA 16823-0048 - Phone 800-247-6628 or 814-359-3441 - Fax 800-447-3044 or 814-359-3044 + email:supelco@sial.com H

Supelco is a member of the Sigma-Aldrich family. Supelco products are sold through Sigma-Aldrich, Inc. Sigma-Aldrich warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product for a particular use. Additional terms and conditions may apply. Please see the reverse side of the invoice or packing slip.

BKU